Skip to main content

Add AWGN Directly to PSD in MATLAB

 

In general, we compute the power spectral density (PSD) of a noisy periodic signal. However, in this article, you will learn how to add noise directly to the PSD of a signal. This process is approximately equivalent to adding noise to a clean signal and then computing its PSD. Here, I will discuss both the theoretical background and the MATLAB implementation.

Steps

1. First, compute the Fast Fourier Transform (FFT) of the clean signal. Then, calculate the Power Spectral Density (PSD) from the FFT.

2. In our case, ensure that the PSD is in the linear scale. Next, compute the noise power from the given Signal-to-Noise Ratio (SNR) using:

    noise_power = signal power / linear SNR
    

3. Then, generate Additive White Gaussian Noise (AWGN) using the formula:

    AWGN noise = sqrt(noise_power) * randn
    

      where randn generates a Gaussian-distributed signal with a mean of 0 and a variance of 1.

 

MATLAB Code 

clc; clear; close all;

%% Define Parameters
fs = 1000; % Sampling frequency (Hz)
T = 0.2; % Time period of sine wave (s)
A = 1; % Amplitude
N = 1024; % Number of samples
t = linspace(-0.5, 0.5, N); % Time vector
f_sin = 5; % Frequency of sine wave (Hz)

%% Generate Periodic Sine Wave
sine_wave = A * sin(2 * pi * f_sin * t);

%% Compute PSD using FFT
Xf = fftshift(fft(sine_wave)); % Compute FFT and shift
PSD = abs(Xf).^2 / N; % Compute Power Spectral Density

%% Generate AWGN in Frequency Domain (Method 1)
snr_dB = 20; % SNR in dB
snr_linear = 10^(snr_dB/10); % Convert SNR to linear scale
signal_power = mean(PSD); % Approximate power of the original spectrum
noise_power = signal_power / snr_linear; % Compute noise power
noise_spectrum = sqrt(noise_power) .* (randn(size(PSD)) + 1j*randn(size(PSD))); % AWGN

%% Add AWGN Directly to PSD
noisy_PSD = PSD + abs(noise_spectrum).^2; % Add noise power to PSD

%% Generate AWGN in Time Domain (Method 2)
noise_time = sqrt(noise_power) * randn(size(sine_wave)); % AWGN in time domain
noisy_sine = sine_wave + noise_time; % Add noise to signal

%% Compute PSD of Noisy Sine Wave
Xf_noisy = fftshift(fft(noisy_sine)); % Compute FFT of noisy signal
PSD_noisy = abs(Xf_noisy).^2 / N; % Compute Power Spectral Density

%% Plot Results
freq = linspace(-fs/2, fs/2, N); % Frequency axis

figure;

% Plot Time-Domain Sine Wave
subplot(3,1,1);
plot(t, sine_wave, 'b', 'LineWidth', 1.5); hold on;
plot(t, noisy_sine, 'r', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude');
title('Sine Wave Before and After AWGN');
legend('Original Sine Wave', 'Noisy Sine Wave');
grid on;

% Plot PSD Comparison (Direct AWGN to PSD)
subplot(3,1,2);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(noisy_PSD + eps), 'r', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('AWGN Added Directly to PSD');
legend('Original PSD', 'PSD with Direct AWGN');
grid on;

% Plot PSD Comparison (AWGN in Time Domain)
subplot(3,1,3);
plot(freq, 10*log10(PSD + eps), 'b', 'LineWidth', 1.5); hold on;
plot(freq, 10*log10(PSD_noisy + eps), 'g', 'LineWidth', 1.5);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB)');
title('PSD: Original vs. PSD from Noisy Sine Wave');
legend('Original PSD', 'PSD from Noisy Signal');
grid on;

Output

 





Copy the MATLAB Code from here 

 

Further Reading 

  1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...