Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Pulse Width Modulation (PWM)


Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a method of controlling the average power delivered by an electrical signal.

 






Fig: An example of PWM in an idealized inductor driven by a blue line voltage source modulated as a series of sawtooth pulses, resulting in a red line current in the inductor. 

 

Duty cycle

A low duty cycle equates to low power because the power is off for most of the time; the word duty cycle reflects the ratio of "on" time to the regular interval or "period" of time. The duty cycle is measured in percent, with 100% representing full on. A digital signal has a duty cycle of 50% and looks like a "square" wave when it is on 50% of the time and off the other 50%. A digital signal has a duty cycle of greater than 50% when it spends more time in the on state than the off state. A digital signal has a duty cycle of 50% when it alternates between the on and off states more often than not.

 

 

 

 



Mathematical Formulation of pulse-width waveform

Pulse-width modulation uses a rectangular pulse wave whose pulse width is modulated resulting in the variation of the average value of the waveform. If we consider a pulse waveform f(t), with period T, low-value ymin, a high-value ymax, and a duty cycle D, the average value of the waveform is given by

 

Average Value of the Signal and PWM Generation

The average value of the signal is given by:

\[ \bar{y} = \frac{1}{T} \int_0^T f(t) \, dt \] As \(f(t)\) is a pulse wave, its value is \(y_\text{max}\) for \(0 < t < D \cdot T\) and \(y_\text{min}\) for \(D \cdot T < t < T\). The above expression then becomes:

\[ \bar{y} = \frac{1}{T} \int_0^{D \cdot T} y_\text{max} \, dt + \frac{1}{T} \int_{D \cdot T}^T y_\text{min} \, dt \] \[ = \frac{1}{T} \left(D \cdot T \cdot y_\text{max} + T(1 - D) \cdot y_\text{min}\right) \] \[ = D \cdot y_\text{max} + (1 - D) \cdot y_\text{min} \]

From this, the average value of the signal (\(\bar{y}\)) is directly dependent on the duty cycle \(D\). 

 

Generating a PWM Signal

The simplest way to generate a PWM signal is the intersection method, which requires only a sawtooth or a triangle waveform (easily generated using a simple oscillator) and a comparator. When the value of the reference signal is more than the modulation waveform, the PWM signal (magenta) is in the high state; otherwise, it is in the low state. 

 

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Relationship between Gaussian and Rayleigh distributions

Wireless Signal Processing Gaussian and Rayleigh distributions ... 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution. Any wireless communication diagram will show the addition of AWGN noise as the signal travels through the channel. Due to its independence from operating frequency, it is known as AWGN, or additive white Gaussian noise. To determine the noise in a signal, we compute noise power density, or noise power / Hz (here, bandwidth in Hz). It mostly serves to represent real-valued random variables whose distributions are unknown in the scientific and social sciences. It has a bell shape. According to the theory of a Gaussian random variable, under certain circumstances, the average of numerous samples (observations) of a random variable with a finite mean and variance is ...

BER vs SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of ...