Skip to main content

How Windowing Affects Your Periodogram


The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.

 

Power Spectral Density (PSD)

The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function:

Sx(f) = FT{Rx(ฯ„)}

Here, Rx(ฯ„)}is the autocorrelation function.

FT : Fourier Transform

 

Classical Periodogram

The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT):

Px(f) = \(\frac{1}{N}\) X(f)2

Here:

  • X(f): DFT of the signal x(n)

  • N: Signal length

However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the signal.

 

Windowing to Mitigate Spectral Leakage

Spectral leakage can be minimized by applying a window function to the signal before computing the DFT. The resulting PSD estimate is called the windowed periodogram:

Pw(f) = \(\frac{1}{NW}\) Xw(f)2

Here:

  • w(n): Window function

  • W: Window normalization factor

Common Window Functions

  • Rectangular Window: Equivalent to the classical periodogram.

w[n]=1, 0≤n≤N−1

w[n]=0, otherwise

Where, N is the window length

  • Hamming Window: Reduces sidelobe amplitudes, improving frequency resolution.

w[n]=0.5(1−cos(\(\frac{\ 2\pi n}{N - 1}\ \))), 0≤n≤N−1

Where, N is the window length

  • Hanning Window: Similar to Hamming but with less sidelobe attenuation.

w[n]=0.54 – 0.46cos(\(\frac{\ 2\pi n}{N - 1}\ \)), 0≤n≤N−1

Where, N is the window length

  • Blackman Window: Offers even greater sidelobe suppression but at the cost of wider main lobes.

w[n]=0.42 – 0.5(cos(\(\frac{\ 2\pi n}{N - 1}\ \)) + 0.08(cos(\(\frac{\ 4\pi n}{N - 1}\ \)), 0≤n≤N−1

Where, N is the window length

 

Implementation Steps

  1. Segment the Signal: Divide the signal into overlapping or non-overlapping segments of length N.

  2. Apply a Window Function: Multiply each segment by a window function w(n).

  3. Compute the DFT: Calculate the DFT of the windowed segments.

  4. Average the Periodograms: For overlapping segments, average the periodograms to reduce variance.

     

Properties of the Windowed Periodogram

  • Bias: Windowing introduces bias in the PSD estimate as the window modifies the signal spectrum.

  • Variance: Averaging periodograms (Welch method) reduces variance but decreases frequency resolution.

  • Trade-Off: The choice of window affects the trade-off between spectral resolution and leakage suppression.

     

    MATLAB Code

    clc;
    clear;
    close all;

    fs = 48000;
    t = 0:1/fs:0.02;
    f_ping = 12000;

    % Base sine wave
    sine_wave = sin(2*pi*f_ping*t)';

    % Apply windows
    w_rect = ones(size(sine_wave));
    w_hann = hann(length(sine_wave));
    w_hamming = hamming(length(sine_wave));
    w_blackman = blackman(length(sine_wave));

    % Windowed signals
    s_rect = sine_wave .* w_rect;
    s_hann = sine_wave .* w_hann;
    s_hamming = sine_wave .* w_hamming;
    s_blackman = sine_wave .* w_blackman;

    % FFT
    Nfft = 4096;
    f = fs*(0:Nfft/2-1)/Nfft;

    % Function to compute and normalize spectrum
    get_norm_fft = @(sig) abs(fft(sig, Nfft))/max(abs(fft(sig, Nfft)));

    S_rect = get_norm_fft(s_rect);
    S_hann = get_norm_fft(s_hann);
    S_hamming = get_norm_fft(s_hamming);
    S_blackman = get_norm_fft(s_blackman);

    % Mainlobe power (±2 bins around peak)
    mainlobe_bins = 2;

    % Function to compute power ratio
    compute_power_ratio = @(S) ...
    deal( ...
    sum(S.^2), ... % Total power
    max(1, find(S == max(S), 1)), ... % Peak bin
    @(peak_bin) sum(S(max(1,peak_bin-mainlobe_bins):min(Nfft,peak_bin+mainlobe_bins)).^2), ...
    @(total, main) 10*log10((total-main)/main) ... % dB sidelobe/mainlobe ratio
    );

    % Calculate ratios
    [total_r, peak_r, get_main_r, get_slr_r] = compute_power_ratio(S_rect);
    main_r = get_main_r(peak_r); slr_r = get_slr_r(total_r, main_r);

    [total_h, peak_h, get_main_h, get_slr_h] = compute_power_ratio(S_hann);
    main_h = get_main_h(peak_h); slr_h = get_slr_h(total_h, main_h);

    [total_ham, peak_ham, get_main_ham, get_slr_ham] = compute_power_ratio(S_hamming);
    main_ham = get_main_ham(peak_ham); slr_ham = get_slr_ham(total_ham, main_ham);

    [total_b, peak_b, get_main_b, get_slr_b] = compute_power_ratio(S_blackman);
    main_b = get_main_b(peak_b); slr_b = get_slr_b(total_b, main_b);

    % Display Results
    fprintf('Window | Mainlobe Power | Sidelobe Power | Sidelobe/Main (dB)\n');
    fprintf('------------|----------------|----------------|--------------------\n');
    fprintf('Rectangular | %14.4f | %14.4f | %18.2f\n', main_r, total_r - main_r, slr_r);
    fprintf('Hann | %14.4f | %14.4f | %18.2f\n', main_h, total_h - main_h, slr_h);
    fprintf('Hamming | %14.4f | %14.4f | %18.2f\n', main_ham, total_ham - main_ham, slr_ham);
    fprintf('Blackman | %14.4f | %14.4f | %18.2f\n', main_b, total_b - main_b, slr_b);

    % Plot
    figure;
    plot(f, 20*log10(S_rect(1:Nfft/2)), 'k'); hold on;
    plot(f, 20*log10(S_hann(1:Nfft/2)), 'r');
    plot(f, 20*log10(S_hamming(1:Nfft/2)), 'g');
    plot(f, 20*log10(S_blackman(1:Nfft/2)), 'b');
    legend('Rectangular','Hann','Hamming','Blackman');
    xlim([f_ping-3000 f_ping+3000]); ylim([-100 5]);
    xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
    title('Windowing Effects on Spectrum');
    grid on;

    Output 

    Window      | Mainlobe Power | Sidelobe Power | Sidelobe/Main (dB)
    ------------|----------------|----------------|--------------------
    Rectangular |         3.5771 |         4.9562 |               1.42
    Hann        |         4.3630 |         8.4370 |               2.86
    Hamming     |         4.2367 |         7.3928 |               2.42
    Blackman    |         4.4940 |        10.2410 |               3.58

     

     








Applications

  • Signal Processing: Analyzing frequency content of time-varying signals.

  • Communications: Evaluating spectrum occupancy in wireless systems.

  • Bioinformatics: Investigating periodicities in biological signals (e.g., EEG, ECG).

  • Seismology: Characterizing seismic wave frequencies.

     

    Further Reading

    1. Periodogram in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview of Delay Spread and Multi-path ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on RMS Delay Spread, Excess Delay ... ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Online Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes for Calculating Different Types of delay Spreads Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Baseband and Passband Implementations of ASK, FSK, and PSK ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Baseband and Passband ... ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory of Pulse Amplitude Moduation (PAM) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal ๐Ÿงฎ Simulation results for comparison of PAM, PWM, PPM, DM, and PCM ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Pulse Amplitude Modulation ... ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

๐Ÿ“˜ How Beamforming Improves SNR ๐Ÿงฎ MATLAB Code ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Beamforming in MATLAB ... MIMO / Massive MIMO Beamforming Techniques Beamforming Techniques MATLAB Codes for Beamforming... How Beamforming Improves SNR The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR)...

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...