Skip to main content

How to normalize a highly distorted signal


 

Signal normalization is a common practice in signal processing, especially after a signal has undergone filtering. For example, when using an FIR low-pass filter during the demodulation process of a modulated signal—such as AM or DSB-SC demodulation—you may observe that the first few samples of the demodulated signal exhibit significant transients due to the filtering effect. This occurs because the filter requires approximately N past input samples to produce a steady-state or valid output. To correct for amplitude attenuation, the filtered signal can be normalized to a standard range, such as -1 to 1

 

MATLAB Script

% Parameters for the sine wave
fs = 1000; % Sampling frequency
t = 0:1/fs:1; % Time vector
f = 15; % Frequency of the sine wave

% Example signal: Noisy sine wave
filtered_signal = 0.03*sin(2 * pi * f * t) + 0.05*sin(2 * pi * f * t);
% Step 2: Normalize the filterd signal to the range [-1, +1]
normalized_signal = (filtered_signal - min(filtered_signal)) / (max(filtered_signal) - min(filtered_signal));
normalized_signal = normalized_signal * 2 - 1; % Scale to [-1, +1]


% Original Signal
figure();
plot(t, filtered_signal, 'b', 'LineWidth', 1.5);
title('Filtered Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-0.1 0.1]);
grid on;

% Normalized Signal
figure();
plot(t, normalized_signal, 'g', 'LineWidth', 1.5);
title('Normalized Signal [-1, +1]');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

Output








 

 

Copy the MATLAB Code from here 

 


 

Normalize a Highly distorted filtered signal

When normalizing a filtered signal, you may observe that the initial data points are often highly distorted, while the remainder of the signal appears stable. Therefore, it's recommended to discard the first N points (where N is the filter order) before performing normalization.

 

MATLAB script for normalizing a highly distorted filtered signal, where the first few samples are highly transient due to filtering effects

 
 % Parameters for the sine wave
fs = 1000; % Sampling frequency
t = 0:1/fs:1; % Time vector
t1 = N/fs:1/fs:1;
f = 15; % Frequency of the sine wave

% Example signal: Noisy sine wave
filtered_signal = 0.03*sin(2 * pi * f * t) + 0.05*sin(2 * pi * f * t);

N = 10; % N = Filter order
signal1 = filtered_signal(1:N) * 15;
signal2 = filtered_signal(N+1:end);

filtered_signal = [signal1 signal2];


% Normalize the filterd signal to the range [-1, +1] without discarding
% first N-points (N = order of filter)
normalized_signal = (filtered_signal - min(filtered_signal)) / (max(filtered_signal) ...
- min(filtered_signal));
normalized_signal = normalized_signal * 2 - 1; % Scale to [-1, +1]

% Normalize the filterd signal to the range [-1, +1]
normalized_signal1 = (filtered_signal(N+1:end) - min(filtered_signal(N+1:end))) / (max(filtered_signal(N+1:end)) ...
- min(filtered_signal(N+1:end)));
normalized_signal1 = normalized_signal1 * 2 - 1; % Scale to [-1, +1]


% Original Signal
figure();
plot(t, filtered_signal, 'b', 'LineWidth', 1.5);
title('Highly Distorted Filtered Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-1 1]);
grid on;

% Normalized Signal
figure();
plot(t, normalized_signal, 'g', 'LineWidth', 1.5);
title('Normalized Signal [-1, +1] without discarding first N-points');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Normalized Signal
figure();
plot(t1, normalized_signal1, 'g', 'LineWidth', 1.5);
title('Normalized Signal [-1, +1]');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

Output 

 
















 Suppose we are using a filter of order N (e.g., 200), which uses N+1 taps (for FIR). The filter requires approximately N past input samples to produce a steady-state or valid output. Therefore, the first N or so samples are based on incomplete data, leading to startup transients. Discarding the first N samples is thus a conservative and practical way to avoid these artifacts.

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...