Skip to main content

How to normalize a highly distorted signal


 

Signal normalization is a common practice in signal processing, especially after a signal has undergone filtering. For example, when using an FIR low-pass filter during the demodulation process of a modulated signal—such as AM or DSB-SC demodulation—you may observe that the first few samples of the demodulated signal exhibit significant transients due to the filtering effect. This occurs because the filter requires approximately N past input samples to produce a steady-state or valid output. To correct for amplitude attenuation, the filtered signal can be normalized to a standard range, such as -1 to 1

 

MATLAB Script

% Parameters for the sine wave
fs = 1000; % Sampling frequency
t = 0:1/fs:1; % Time vector
f = 15; % Frequency of the sine wave

% Example signal: Noisy sine wave
filtered_signal = 0.03*sin(2 * pi * f * t) + 0.05*sin(2 * pi * f * t);
% Step 2: Normalize the filterd signal to the range [-1, +1]
normalized_signal = (filtered_signal - min(filtered_signal)) / (max(filtered_signal) - min(filtered_signal));
normalized_signal = normalized_signal * 2 - 1; % Scale to [-1, +1]


% Original Signal
figure();
plot(t, filtered_signal, 'b', 'LineWidth', 1.5);
title('Filtered Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-0.1 0.1]);
grid on;

% Normalized Signal
figure();
plot(t, normalized_signal, 'g', 'LineWidth', 1.5);
title('Normalized Signal [-1, +1]');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

Output








 

 

Copy the MATLAB Code from here 

 


 

Normalize a Highly distorted filtered signal

When normalizing a filtered signal, you may observe that the initial data points are often highly distorted, while the remainder of the signal appears stable. Therefore, it's recommended to discard the first N points (where N is the filter order) before performing normalization.

 

MATLAB script for normalizing a highly distorted filtered signal, where the first few samples are highly transient due to filtering effects

 
 % Parameters for the sine wave
fs = 1000; % Sampling frequency
t = 0:1/fs:1; % Time vector
t1 = N/fs:1/fs:1;
f = 15; % Frequency of the sine wave

% Example signal: Noisy sine wave
filtered_signal = 0.03*sin(2 * pi * f * t) + 0.05*sin(2 * pi * f * t);

N = 10; % N = Filter order
signal1 = filtered_signal(1:N) * 15;
signal2 = filtered_signal(N+1:end);

filtered_signal = [signal1 signal2];


% Normalize the filterd signal to the range [-1, +1] without discarding
% first N-points (N = order of filter)
normalized_signal = (filtered_signal - min(filtered_signal)) / (max(filtered_signal) ...
- min(filtered_signal));
normalized_signal = normalized_signal * 2 - 1; % Scale to [-1, +1]

% Normalize the filterd signal to the range [-1, +1]
normalized_signal1 = (filtered_signal(N+1:end) - min(filtered_signal(N+1:end))) / (max(filtered_signal(N+1:end)) ...
- min(filtered_signal(N+1:end)));
normalized_signal1 = normalized_signal1 * 2 - 1; % Scale to [-1, +1]


% Original Signal
figure();
plot(t, filtered_signal, 'b', 'LineWidth', 1.5);
title('Highly Distorted Filtered Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-1 1]);
grid on;

% Normalized Signal
figure();
plot(t, normalized_signal, 'g', 'LineWidth', 1.5);
title('Normalized Signal [-1, +1] without discarding first N-points');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Normalized Signal
figure();
plot(t1, normalized_signal1, 'g', 'LineWidth', 1.5);
title('Normalized Signal [-1, +1]');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

Output 

 
















 Suppose we are using a filter of order N (e.g., 200), which uses N+1 taps (for FIR). The filter requires approximately N past input samples to produce a steady-state or valid output. Therefore, the first N or so samples are based on incomplete data, leading to startup transients. Discarding the first N samples is thus a conservative and practical way to avoid these artifacts.

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

FFT Magnitude and Phase Spectrum using MATLAB

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 📚 Further Reading   MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude o...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...