Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Equalizer to reduce Multi-path Effects using MATLAB

 

Steps

1. Convert Bit Stream to Bipolar Format. Converts the bit stream from binary (0, 1) to bipolar format (-1, 1).

2. Define Channel Impulse Response

3. Pass Signal Through the Channel. Convolves the bipolar signal with the channel impulse response to simulate the channel effect.

4. Adds Gaussian noise to the received signal based on the specified SNR.

5. Initialize Adaptive Filter Parameters. 

  • w: Initializes the adaptive filter coefficients.
  • x_buf: Initializes the buffer for the input to the adaptive filter.
  • equalized_signal: Initializes the array to store the equalized signal.
  • P: Initializes the inverse correlation matrix.
  • 6. Adaptive Equalization Using RLS Algorithm

    Loops through each sample to perform adaptive equalization:

    • Update Input Buffer: Adds the current sample to the input buffer.
    • Calculate Gain Vector: Computes the gain vector k for the adaptive filter.
    • Calculate Error Signal: Computes the error between the original signal and the filter output.
    • Update Filter Coefficients: Updates the adaptive filter coefficients based on the error signal.
    • Update Inverse Correlation Matrix: Updates the inverse correlation matrix for the RLS algorithm.
    • Store Equalized Output: Stores the equalized signal in the output array.

    7. Plot Original and Equalized Signals 

     

    MATLAB Script

    clc;
    clear;
    close all;

    % Parameters
    bit_stream = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0]; % Original bit stream
    N = length(bit_stream); % Number of samples
    filter_order = 10; % Order of the adaptive filter
    lambda = 0.99; % Forgetting factor for RLS algorithm
    delta = 1; % Initial value for the inverse correlation matrix
    SNR = 15; % SNR value in dB

    % Convert bit stream to bipolar format (-1, 1)
    original_signal = bit_stream * 2 - 1;

    % Channel impulse response
    h = [0.75, 0.05, 0.02];

    % Pass the signal through the channel
    received_signal = filter(h, 1, original_signal);

    % Add some noise
    received_signal_noisy = awgn(received_signal, SNR, 'measured');

    % Initialize the adaptive filter coefficients
    w = zeros(filter_order, 1);

    % Initialize buffer for the input to the adaptive filter
    x_buf = zeros(filter_order, 1);

    % Initialize output
    equalized_signal = zeros(N, 1);

    % Initialize the inverse correlation matrix
    P = delta * eye(filter_order);

    % Adaptive equalization using RLS
    for n = 1:N
        % Update the input buffer
        x_buf = [received_signal_noisy(n); x_buf(1:end-1)];

        % Calculate the gain vector
        k = (P * x_buf) / (lambda + x_buf' * P * x_buf);

        % Calculate the error signal
        e = original_signal(n) - w' * x_buf;

        % Update the filter coefficients
        w = w + k * e;

        % Update the inverse correlation matrix
        P = (P - k * x_buf' * P) / lambda;

        % Store the equalized output
        equalized_signal(n) = w' * x_buf;
    end

    % Plot original and equalized signals
    figure;
    subplot(2, 1, 1);
    stem(original_signal, 'filled');
    title('Original Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;

    subplot(2, 1, 2);
    stem(equalized_signal, 'filled');
    title('Equalized Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;
     

    Output


     

    Copy the MATLAB Code from here

    People are good at skipping over material they already know!

    View Related Topics to







    Admin & Author: Salim

    profile

      Website: www.salimwireless.com
      Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
      Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
      Possess M.Tech in Electronic Communication Systems.


    Contact Us

    Name

    Email *

    Message *

    Popular Posts

    BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

    Comparisons among ASK, PSK, and FSK | And the definitions of each

    Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

    MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

    Difference between AWGN and Rayleigh Fading

    Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = hx + n ... (i) The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2. Additive White Gaussian Noise (AWGN) The mathematical effect involves adding Gauss

    FFT Magnitude and Phase Spectrum using MATLAB

    MATLAB Code clc; clear; close all; % Parameters fs = 100;           % Sampling frequency t = 0:1/fs:1-1/fs;  % Time vector % Signal definition x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t); % Compute Fourier Transform y = fft(x); z = fftshift(y); % Frequency vector ly = length(y); f = (-ly/2:ly/2-1)/ly*fs; % Compute phase phase = angle(z); % Plot magnitude of the Fourier Transform figure; subplot(2, 1, 1); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude of Fourier Transform'); grid on; % Plot phase of the Fourier Transform subplot(2, 1, 2); stem(f, phase, 'b'); xlabel('Frequency (Hz)'); ylabel('Phase (radians)'); title('Phase of Fourier Transform'); grid on;   Output  Copy the MATLAB Code from here % The code is written by SalimWireless.Com clc; clear; close all; % Parameters fs = 100; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector % Signal definition x = cos(2*pi*15*t -

    Channel Impulse Response (CIR)

    Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

    MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

      Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi