Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Equalizer to reduce Multi-path Effects using MATLAB

 

Steps

1. Convert Bit Stream to Bipolar Format. Converts the bit stream from binary (0, 1) to bipolar format (-1, 1).

2. Define Channel Impulse Response

3. Pass Signal Through the Channel. Convolves the bipolar signal with the channel impulse response to simulate the channel effect.

4. Adds Gaussian noise to the received signal based on the specified SNR.

5. Initialize Adaptive Filter Parameters. 

  • w: Initializes the adaptive filter coefficients.
  • x_buf: Initializes the buffer for the input to the adaptive filter.
  • equalized_signal: Initializes the array to store the equalized signal.
  • P: Initializes the inverse correlation matrix.
  • 6. Adaptive Equalization Using RLS Algorithm

    Loops through each sample to perform adaptive equalization:

    • Update Input Buffer: Adds the current sample to the input buffer.
    • Calculate Gain Vector: Computes the gain vector k for the adaptive filter.
    • Calculate Error Signal: Computes the error between the original signal and the filter output.
    • Update Filter Coefficients: Updates the adaptive filter coefficients based on the error signal.
    • Update Inverse Correlation Matrix: Updates the inverse correlation matrix for the RLS algorithm.
    • Store Equalized Output: Stores the equalized signal in the output array.

    7. Plot Original and Equalized Signals 

     

    MATLAB Script

    clc;
    clear;
    close all;

    % Parameters
    bit_stream = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0]; % Original bit stream
    N = length(bit_stream); % Number of samples
    filter_order = 10; % Order of the adaptive filter
    lambda = 0.99; % Forgetting factor for RLS algorithm
    delta = 1; % Initial value for the inverse correlation matrix
    SNR = 15; % SNR value in dB

    % Convert bit stream to bipolar format (-1, 1)
    original_signal = bit_stream * 2 - 1;

    % Channel impulse response
    h = [0.75, 0.05, 0.02];

    % Pass the signal through the channel
    received_signal = filter(h, 1, original_signal);

    % Add some noise
    received_signal_noisy = awgn(received_signal, SNR, 'measured');

    % Initialize the adaptive filter coefficients
    w = zeros(filter_order, 1);

    % Initialize buffer for the input to the adaptive filter
    x_buf = zeros(filter_order, 1);

    % Initialize output
    equalized_signal = zeros(N, 1);

    % Initialize the inverse correlation matrix
    P = delta * eye(filter_order);

    % Adaptive equalization using RLS
    for n = 1:N
        % Update the input buffer
        x_buf = [received_signal_noisy(n); x_buf(1:end-1)];

        % Calculate the gain vector
        k = (P * x_buf) / (lambda + x_buf' * P * x_buf);

        % Calculate the error signal
        e = original_signal(n) - w' * x_buf;

        % Update the filter coefficients
        w = w + k * e;

        % Update the inverse correlation matrix
        P = (P - k * x_buf' * P) / lambda;

        % Store the equalized output
        equalized_signal(n) = w' * x_buf;
    end

    % Plot original and equalized signals
    figure;
    subplot(2, 1, 1);
    stem(original_signal, 'filled');
    title('Original Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;

    subplot(2, 1, 2);
    stem(equalized_signal, 'filled');
    title('Equalized Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;
     

    Output


     

    Copy the MATLAB Code from here

    People are good at skipping over material they already know!

    View Related Topics to







    Admin & Author: Salim

    profile

      Website: www.salimwireless.com
      Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
      Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
      Possess M.Tech in Electronic Communication Systems.


    Contact Us

    Name

    Email *

    Message *

    Popular Posts

    Simulation of ASK, FSK, and PSK using MATLAB Simulink

    ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

    BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

    MIMO, massive MIMO, and Beamforming

      The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via  beamforming  or directional transmission. 1. Some essential characteristics of a MIMO system 1.1. Spatial Division Multiplexing Access (SDMA) SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter. 1.2. Spatial Multiplexing Another essential ...

    Analog Beamforming vs Digital beamforming

    Beamforming Techniques Analog vs Digital beamforming Page 1 | Page 2 | 1. Analog Beamforming: Beamforming is a method of focusing a signal in a certain direction to provide sufficient signal strength at the receiver end of the communication process. We normally require more than one closely located antenna to form a beam in a specific direction and focus the resultant signal from antennas to use beam forming. We can also use a phase shifter or PSs to control the phases of a signal. We employ MIMO (multiple input multiple output antenna) [↗]  to provide beam forming. In a MIMO system, antennas are normally positioned in a half-wavelength interval of the operating frequency. We commonly employ beam forming when we need to send a signal over a great distance (e.g., for radar communication) and omnidirectional transmission isn't feasible. On the other hand, we can use beam forming to extend the range of our signal without boost...

    Comparisons among ASK, PSK, and FSK | And the definitions of each

    Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

    MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

    Calculation of SNR from FFT bins

      Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined using a modified Bessel function of the first kind.    Steps Set up the sampling rate and time vector Compute the FFT and periodogram Plot the periodogram using FFT Specify parameters for Kaiser window and periodogram Calculate the frequency resolution and signal...

    Difference between AWGN and Rayleigh Fading

    Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...