Skip to main content

Equalizer to reduce Multi-path Effects using MATLAB

 

Steps

1. Convert Bit Stream to Bipolar Format. Converts the bit stream from binary (0, 1) to bipolar format (-1, 1).

2. Define Channel Impulse Response

3. Pass Signal Through the Channel. Convolves the bipolar signal with the channel impulse response to simulate the channel effect.

4. Adds Gaussian noise to the received signal based on the specified SNR.

5. Initialize Adaptive Filter Parameters. 

  • w: Initializes the adaptive filter coefficients.
  • x_buf: Initializes the buffer for the input to the adaptive filter.
  • equalized_signal: Initializes the array to store the equalized signal.
  • P: Initializes the inverse correlation matrix.
  • 6. Adaptive Equalization Using RLS Algorithm

    Loops through each sample to perform adaptive equalization:

    • Update Input Buffer: Adds the current sample to the input buffer.
    • Calculate Gain Vector: Computes the gain vector k for the adaptive filter.
    • Calculate Error Signal: Computes the error between the original signal and the filter output.
    • Update Filter Coefficients: Updates the adaptive filter coefficients based on the error signal.
    • Update Inverse Correlation Matrix: Updates the inverse correlation matrix for the RLS algorithm.
    • Store Equalized Output: Stores the equalized signal in the output array.

    7. Plot Original and Equalized Signals 

     

    MATLAB Script

    clc;
    clear;
    close all;

    % Parameters
    bit_stream = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0]; % Original bit stream
    N = length(bit_stream); % Number of samples
    filter_order = 10; % Order of the adaptive filter
    lambda = 0.99; % Forgetting factor for RLS algorithm
    delta = 1; % Initial value for the inverse correlation matrix
    SNR = 15; % SNR value in dB

    % Convert bit stream to bipolar format (-1, 1)
    original_signal = bit_stream * 2 - 1;

    % Channel impulse response
    h = [0.75, 0.05, 0.02];

    % Pass the signal through the channel
    received_signal = filter(h, 1, original_signal);

    % Add some noise
    received_signal_noisy = awgn(received_signal, SNR, 'measured');

    % Initialize the adaptive filter coefficients
    w = zeros(filter_order, 1);

    % Initialize buffer for the input to the adaptive filter
    x_buf = zeros(filter_order, 1);

    % Initialize output
    equalized_signal = zeros(N, 1);

    % Initialize the inverse correlation matrix
    P = delta * eye(filter_order);

    % Adaptive equalization using RLS
    for n = 1:N
        % Update the input buffer
        x_buf = [received_signal_noisy(n); x_buf(1:end-1)];

        % Calculate the gain vector
        k = (P * x_buf) / (lambda + x_buf' * P * x_buf);

        % Calculate the error signal
        e = original_signal(n) - w' * x_buf;

        % Update the filter coefficients
        w = w + k * e;

        % Update the inverse correlation matrix
        P = (P - k * x_buf' * P) / lambda;

        % Store the equalized output
        equalized_signal(n) = w' * x_buf;
    end

    % Plot original and equalized signals
    figure;
    subplot(2, 1, 1);
    stem(original_signal, 'filled');
    title('Original Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;

    subplot(2, 1, 2);
    stem(equalized_signal, 'filled');
    title('Equalized Signal');
    xlabel('Sample Index');
    ylabel('Amplitude');
    grid on;
     

    Output


     

    Copy the MATLAB Code from here

     

    Further Reading

    People are good at skipping over material they already know!

    View Related Topics to







    Contact Us

    Name

    Email *

    Message *

    Popular Posts

    BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

    📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

    Constellation Diagram of ASK in Detail

    A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

    Online Simulator for ASK, FSK, and PSK

    Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

    Coherence Bandwidth and Coherence Time

    🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

    MATLAB Code for ASK, FSK, and PSK

    📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

    Constellation Diagrams of ASK, PSK, and FSK

    📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

    UGC NET Electronic Science Previous Year Question Papers

    Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] ...

    Comparisons among ASK, PSK, and FSK | And the definitions of each

    📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...