Skip to main content

Theoretical BER vs SNR for binary ASK and FSK

 

Theoretical Ber vs SNR for Amplitude Shift Keying (ASK)

The theoretical bit error rate (BER) for binary Amplitude Shift Keying (ASK) as a function of the signal-to-noise ratio (SNR) can be derived using the following expression:

If we map the binary signals to 1 and -1 in ASK, the probability of bit error will be:

BER = Q(√(2*SNR))
 
If we map the binary signals to 0 and 1 in ASK, the probability of bit error will be:
 
 BER = Q(√(SNR/2))
 
Where:
Q(x) is the Q-function, which is the tail probability of the standard normal distribution.
SNR is the signal-to-noise ratio.
N0 is the noise power spectral density.

Where Q is the Q function
In mathematics Q(x) = 0.5 * erfc(x/2)
 

Calculate the Probability of Error using Q-function for ASK:

For ASK with amplitudes 0 and 1:

  • When bit '0' is transmitted, the received signal is noise only.

  • When bit '1' is transmitted, the received signal is 1 + noise.

  • The receiver makes a decision at the threshold 0.5.

  • If bit 0 is transmitted, noise must exceed +0.5.

  • If bit 1 is transmitted, noise must decrease the signal below 0.5.
  • In either case, the noise is Gaussian with mean = 0 and variance = N0/2. The probability of noise exceeding ±0.5 can be calculated with the Q-function:

    Pb = Q(0.5/σ)

    Where:

    σ = √(0.5/2)

    So:

    Pb = Q(0.5/√(N0/2)) = Q(√(2(0.5)2/N0))

    Since:

    SNR = (0.5)2 / N0

    We get:

    Pb = Q(√(SNR/2))

     

    Theoretical BER vs SNR for Frequency Shift Keying (FSK)

    Formulae for bit error rate (BER) of binary FSK is 

    BER = Q(√(SNR))
     
    Where Q is the Q function
    In mathematics Q(x) = 0.5 * erfc(x/2)

    So, theoretical BER for binary FSK will be
    Where:
    Q(x) is the Q-function.
    Eb is the energy per bit. 
    N0 is the noise power spectral density.
    erfc(x) is the complementary error function.



     

     Fig: Theoretical BER vs SNR for Binary ASK Modulation

     

      

      Fig: Theoretical BER vs SNR for Binary FSK Modulation


    Similarities:

    For both ASK and BFSK, the BER decreases as the SNR increases, indicating better performance at higher SNR values.
    The formulas for BER in both cases involve the complementary error function, indicating that they follow similar trends, though the constants and scaling factors differ slightly.

     

    MATLAB Code for theoretical BER vs SNR for BASK



    MATLAB Code for theoretical BER vs SNR for BFSK



    Also read about

    People are good at skipping over material they already know!

    View Related Topics to







    Admin & Author: Salim

    profile

      Website: www.salimwireless.com
      Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
      Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
      Possess M.Tech in Electronic Communication Systems.


    Contact Us

    Name

    Email *

    Message *

    Popular Posts

    BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

    Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

     There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 1. Equal gain combining method We add the correlated data streams from different antennas in the equal gain combining method. Then we multiply the resultant data with (1/(number of antennas)) For example, for two antenna gain-combining  If the received symbols are y1 and y2, then  Equal combing gain, y_egc = 0.5 * (y1 + y2) 2. Maximum ratio combining method We multiply the individual data streams with weights in the maximum ratio combining method. More weightage is multiplied by those data streams with maximum {|h|^2}, where h denotes the channel impulse response. And less weightage is multiplied by those data streams with corresponding small value of  {|h|^2}.  Then we sum the data streams to improve SNR. In the case of Maximum Ratio Combining, if y1 an...

    Comparisons among ASK, PSK, and FSK | And the definitions of each

    Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

    MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

    Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

    Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

      BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

    MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

      Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

    Constellation Diagrams of ASK, PSK, and FSK

    BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

    Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection

    Frequency Bands Ultra-Wideband... UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi). Key Features of UWB Bands UWB in order to bring decimeter-level positioning to the market There is almost no interference with other radio communication systems Multipath signal propagation resistance  resistance to noise  Low-power transceiver required Ultra Wide Band or UWB comes under the  Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz. UWB frequency range: 3.1 GHz to 10.6 GHz Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field co...