Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks

ASK, FSK, and PSK

 

ASK or OFF ON Keying

Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level "+5 Volt" (which is the upper level) and another level, "0 Volt," which is considered as the lower level. Whenever we need to transmit binary bit "1," then the transmitter transmits a signal of "+5 Volts," and when we need to send bit "0," then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit "1" or "0" by deflecting with quipped filters that can distinguish strings of bits. It is possible by the switching capability of the filter with the particular period to determine each bit from a string of bits.  

 
 

Fig 1: Output of ASK, FSK, and PSK modulation using MATLAB for a data stream "1   1    0   0   1    0   1   0"

FSK

Like other modulation techniques, the message signal is modulated with the high-frequency carrier wave,e, and then two binary values are represented by two different frequencies. The two frequencies are near the carrier frequency. For example, 

We choose two carrier frequencies, f1 and f2, and f1 > f2. Then we modulate binary bit "1" with f1 and binary "0" with f2 frequency, which is a lower frequency than f1. Now, the modulated signal will look like that,

S1(t) = A cos 2Ï€fc1t      for  binary 1   

And S2(t) = A cos 2Ï€fc2t      for  binary 0

Here, fc1 is different from f1. As you know, when the signal goes thru the modulation process, the frequency of the modulated signal is different from the carrier signal by the message signal's frequency.


PSK

In PSK, here,e the carrier signal phase is with a modulated signal with the phase related to the last bit for binary "1," and binary "0" is sent with a signal with the same phase as the preceding one. For example, whenever we need to transmit binary "1", we change the signal's phase by 180 degree, but the phase remains the same when we transmit binary "0". PSK carrier is used as follows

s(t) = A cos (2Ï€fct + Ï€)    for binary 1

s(t) = A cos (2Ï€fct)           for binary 0 


Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates?

Among ASK, FSK, and PSK, PSK (Phase Shift Keying) can generally achieve higher bit rates.

Here's why:

PSK (Phase Shift Keying):

Phase Shift Keying, or PSK, uses various phase shifts to encode extra bits per symbol. For instance, QPSK (Quadrature Phase Shift Keying) doubles the data rate over binary PSK by representing two bits each signal.

The bit rate can be further increased by using higher-order PSK methods, such as 8-PSK and 16-PSK, which can encode even more bits per symbol.


FSK (Frequency Shift Keying):

Because FSK often requires a higher frequency separation to discriminate between different symbols, fewer bits can be broadcast in a given bandwidth, resulting in a lower bit rate than PSK.

Although there are higher-order FSK systems, PSK is more bandwidth-efficient than them.


ASK (Amplitude Shift Keying):

ASK's ability to successfully raise bit rates is limited by its lower bit rate efficiency and increased susceptibility to noise and interference.

Bit rates can be increased via higher-order ASK (such as QAM, which combines ASK and PSK), but pure ASK is typically less effective than PSK.

In conclusion, among these three modulation strategies, PSK has the potential to produce the highest bit rates, particularly when utilising higher-order modulation techniques.

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Channel Estimation utilizing Decision Feedback Equalizer (DFE)

  Channel estimation using DFE is a similar process to a non-linear equalization process. In DFE (decision feed equalizer), equalization error bits/symbols between the feedforward tabs and feedback taps are calculated continuously. And equalizer's tap weights tap weights are updated correspondingly.  In plain language, the error between the received bits and known training bits is calculated, and tap weights are updated accordingly. The equalizer estimates the channel impulse response (CIR) .  Once we find the channel impulse response or channel information, we can easily retrieve the original message signal from the noisy data. In the communication process, the whole system is modeled as a linear time-invariant (LTI) system. And  y = h*x + n where, y = received signal            x = transmitted signal           n = additive white Gaussian noise [Read more about the Linear time-invariant (LTI) system and convolu...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Constellation Diagram of PSK in Detail

        Fig 1: Constellation Diagram of PSK    In the above figure, the binary bit '1' is represented by S1(t) and the binary bit '0' by S2(t), respectively. So, energy of S1(t) = (√(Eb))2 = Eb So, energy of S2(t) = (-√(Eb))2 = Eb Distance between the signaling points, d12 = 2(√(Eb))   Energy per bit for binary '1' and binary '0'           High-order PSK (e.g., 8 PSK, 16 PSK) can transmit more bits per symbol but is more sensitive to noise. Low-order PSK (e.g., BPSK, QPSK) is less susceptible to noise. PSK modulation can be visualized using a constellation diagram, where each point represents a symbol. In the presence of noise, points may be away from the original positions, making them harder to distinguish.  

Hybrid Beamforming | Page 1

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | Hybrid Beamforming: Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming. Overview of hybrid beam forming with example: Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybr...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...