Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

ASK, FSK, and PSK

 

ASK or OFF ON Keying

Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level "+5 Volt" (which is the upper level) and another level, "0 Volt," which is considered as the lower level. Whenever we need to transmit binary bit "1," then the transmitter transmits a signal of "+5 Volts," and when we need to send bit "0," then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit "1" or "0" by deflecting with quipped filters that can distinguish strings of bits. It is possible by the switching capability of the filter with the particular period to determine each bit from a string of bits.  

 
 

Fig 1: Output of ASK, FSK, and PSK modulation using MATLAB for a data stream "1   1    0   0   1    0   1   0"

FSK

Like other modulation techniques, the message signal is modulated with the high-frequency carrier wave,e, and then two binary values are represented by two different frequencies. The two frequencies are near the carrier frequency. For example, 

We choose two carrier frequencies, f1 and f2, and f1 > f2. Then we modulate binary bit "1" with f1 and binary "0" with f2 frequency, which is a lower frequency than f1. Now, the modulated signal will look like that,

S1(t) = A cos 2Ï€fc1t      for  binary 1   

And S2(t) = A cos 2Ï€fc2t      for  binary 0

Here, fc1 is different from f1. As you know, when the signal goes thru the modulation process, the frequency of the modulated signal is different from the carrier signal by the message signal's frequency.


PSK

In PSK, here,e the carrier signal phase is with a modulated signal with the phase related to the last bit for binary "1," and binary "0" is sent with a signal with the same phase as the preceding one. For example, whenever we need to transmit binary "1", we change the signal's phase by 180 degree, but the phase remains the same when we transmit binary "0". PSK carrier is used as follows

s(t) = A cos (2Ï€fct + Ï€)    for binary 1

s(t) = A cos (2Ï€fct)           for binary 0 


Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates?

Among ASK, FSK, and PSK, PSK (Phase Shift Keying) can generally achieve higher bit rates.

Here's why:

PSK (Phase Shift Keying):

Phase Shift Keying, or PSK, uses various phase shifts to encode extra bits per symbol. For instance, QPSK (Quadrature Phase Shift Keying) doubles the data rate over binary PSK by representing two bits each signal.

The bit rate can be further increased by using higher-order PSK methods, such as 8-PSK and 16-PSK, which can encode even more bits per symbol.


FSK (Frequency Shift Keying):

Because FSK often requires a higher frequency separation to discriminate between different symbols, fewer bits can be broadcast in a given bandwidth, resulting in a lower bit rate than PSK.

Although there are higher-order FSK systems, PSK is more bandwidth-efficient than them.


ASK (Amplitude Shift Keying):

ASK's ability to successfully raise bit rates is limited by its lower bit rate efficiency and increased susceptibility to noise and interference.

Bit rates can be increased via higher-order ASK (such as QAM, which combines ASK and PSK), but pure ASK is typically less effective than PSK.

In conclusion, among these three modulation strategies, PSK has the potential to produce the highest bit rates, particularly when utilising higher-order modulation techniques.

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = hx + n ... (i) The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2. Additive White Gaussian Noise (AWGN) The mathematical effect involves adding Gauss

FFT Magnitude and Phase Spectrum using MATLAB

MATLAB Code clc; clear; close all; % Parameters fs = 100;           % Sampling frequency t = 0:1/fs:1-1/fs;  % Time vector % Signal definition x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t); % Compute Fourier Transform y = fft(x); z = fftshift(y); % Frequency vector ly = length(y); f = (-ly/2:ly/2-1)/ly*fs; % Compute phase phase = angle(z); % Plot magnitude of the Fourier Transform figure; subplot(2, 1, 1); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude of Fourier Transform'); grid on; % Plot phase of the Fourier Transform subplot(2, 1, 2); stem(f, phase, 'b'); xlabel('Frequency (Hz)'); ylabel('Phase (radians)'); title('Phase of Fourier Transform'); grid on;   Output  Copy the MATLAB Code from here % The code is written by SalimWireless.Com clc; clear; close all; % Parameters fs = 100; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector % Signal definition x = cos(2*pi*15*t -

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi