Skip to main content

Adaptive Equalizer to mitigate Channel Distortion - in MATLAB

 

Adaptive equalizer adjusts its parameters based on the characteristics of the communication channel. It uses adaptive algorithms to continuously estimate and correct for channel distortion, aiming to minimize errors in the received signal. Adaptive equalizers are versatile and effective in varying channel conditions.

 

MATLAB Code

clc;
clear;
close all;

% Parameters
N = 100000; % Number of samples
filter_order = 10; % Order of the adaptive filter
lambda = 0.99; % Forgetting factor for RLS algorithm
delta = 1; % Initial value for the inverse correlation matrix
SNR_range = -20:1:20; % SNR range in dB
ber = zeros(length(SNR_range), 1); % Initialize BER array

% Generate a random signal
original_signal = randi([0, 1], N, 1) * 2 - 1; % Bipolar signal (-1, 1)

% Channel impulse response
h = [0.8, 0.5, 0.2];

% Loop over SNR values
for snr_idx = 1:length(SNR_range)
    SNR = SNR_range(snr_idx); % Current SNR value
    
    % Pass the signal through the channel
    received_signal = filter(h, 1, original_signal);
    
    % Add some noise
    received_signal = awgn(received_signal, SNR, 'measured');
    
    % Initialize the adaptive filter coefficients
    w = zeros(filter_order, 1);
    
    % Initialize buffer for the input to the adaptive filter
    x_buf = zeros(filter_order, 1);
    
    % Initialize output
    equalized_signal = zeros(N, 1);
    
    % Initialize the inverse correlation matrix
    P = delta * eye(filter_order);
    
    % Adaptive equalization using RLS
    for n = 1:N
        % Update the input buffer
        x_buf = [received_signal(n); x_buf(1:end-1)];
        
        % Calculate the gain vector
        k = (P * x_buf) / (lambda + x_buf' * P * x_buf);
        
        % Calculate the error signal
        e = original_signal(n) - w' * x_buf;
        
        % Update the filter coefficients
        w = w + k * e;
        
        % Update the inverse correlation matrix
        P = (P - k * x_buf' * P) / lambda;
        
        % Store the equalized output
        equalized_signal(n) = w' * x_buf;
    end
    
    % Decode the equalized signal using threshold 0
    decoded_signal = equalized_signal > 0;
    decoded_signal = decoded_signal * 2 - 1; % Convert from (0, 1) to (-1, 1)
    
    % Calculate BER
    num_errors = sum(original_signal ~= decoded_signal);
    ber(snr_idx) = num_errors / N;
end

% Plot BER vs SNR
figure;
semilogy(SNR_range, ber, 'b-o');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR');
grid on;
 

Output


 Fig 1: BER vs SNR for Adaptive Equalizer (to mitigate the channel distortion)


Copy the Code from here

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for Constellation diagrams of ASK, FSK, and PSK 📚 Further Reading   MATLAB Script % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters numSymbols = 1000; % Number of symbols to simulate symbolIndices = randi([0 1], numSymbols, 1); % Random binary symbols (0 or 1) % ASK Modulation (BASK) askAmplitude = [0, 1]; % Amplitudes for binary ASK askSymbols = askAmplitude(symbolIndices + 1); % Modulated BASK symbols % FSK Modulation (Modified BFSK with 90-degree offset) fs = 100; % Sampling frequency symbolDuration = 1; % Symbol duration in seconds t = linspace(0, symbolDuration, fs*symbolDuration); fBase = 1; % Base frequency frequencies = [fBase, fBase]; % Same frequency for both % Generate FSK symbols with 90° phase offset fskSymbols = arrayfun(@(idx) ...     cos(2*pi*frequencies(1)*t) * (1-idx) + ...     ...