Skip to main content

Theoretical BER vs SNR for BPSK


Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel

Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.


Key Points

Constellation diagrams of BASK, BFSK, and BPSK
Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗]

BPSK Modulation

Transmits one of two signals: +√Eb or −√Eb, where Eb is the energy per bit. These signals represent binary 0 and 1.


AWGN Channel

The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density).


Receiver Decision

The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1).


Bit Error Rate (BER)

The probability of error (BER) for BPSK is given by the Q-function, which measures the tail probability of the normal distribution — i.e., the probability that a Gaussian random variable exceeds a certain value.


Understanding the Q-function

The Q-function, Q(x), gives the probability that a standard normal (Gaussian) random variable exceeds x. In this context, it gives the probability that noise pushes the received signal across the wrong decision boundary, resulting in a bit error.

For BPSK, bits ‘0’ and ‘1’ map to +1 and −1, respectively. The probability of error is the probability that noise exceeds a threshold, depending on the signal’s distance from zero.

Calculate the Probability of Error using Q-function

For a Gaussian noise with mean = 0 and variance = N₀/2, the probability of error is:

Pb = Q(1/σ)

where σ = √(N₀/2)

So, Pb = Q(√(2/N₀))

Since SNR = Eb/N₀, we get:

Pb = Q(√(2 × SNR)) or equivalently Q(√(2Eb/N₀)).


Formula for BER

BER = Q(√(2Eb/N₀))

Here, Eb/N₀ is the energy per bit to noise power spectral density ratio, also known as the bit SNR.


Simplified Steps

  1. Calculate the SNR: γb = Eb/N₀
  2. Find the Q-function value: BER = Q(√(2γb))

Intuition

For High SNR (γb is large):

The argument of the Q-function √(2γb) becomes large, Q(x) is small ⇒ fewer errors. Result: BER is low.

For Low SNR (γb is small):

The argument of the Q-function √(2γb) is small, Q(x) is larger ⇒ more errors. Result: BER is higher.


Approximation for High SNR

For large SNR, the BER can be approximated using the complementary error function (erfc):

Q(x) ≈ ½ erfc(x/√2)

Thus, BER ≈ ½ erfc(√γb)

So, the final formula for BPSK in AWGN is:

BER = Q(√(2Eb/N₀))

Higher SNR ⇒ lower BER ⇒ better performance and fewer errors.


MATLAB Code: Theoretical BER vs SNR for BPSK

% The code is written by SalimWireless.Com 

clc;
clear;
close all;

snrdb = 0:1:10;
snrlin = 10.^(snrdb./10);
tber = 0.5 .* erfc(sqrt(snrlin));
semilogy(snrdb, tber, '-bh')
grid on
title('BPSK with AWGN');
xlabel('Signal to noise ratio');
ylabel('Bit error rate');

Output

Theoretical BER vs SNR for BPSK in AWGN
Figure: Theoretical BER vs SNR for BPSK

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

LDPC Encoding and Decoding Techniques

📘 Overview & Theory 🧮 LDPC Encoding Techniques 🧮 LDPC Decoding Techniques 📚 Further Reading 'LDPC' is the abbreviation for 'low density parity check'. LDPC code H matrix contains very few amount of 1's and mostly zeroes. LDPC codes are error correcting code. Using LDPC codes, channel capacities that are close to the theoretical Shannon limit can be achieved.  Low density parity check (LDPC) codes are linear error-correcting block code suitable for error correction in a large block sizes transmitted via very noisy channel. Applications requiring highly reliable information transport over bandwidth restrictions in the presence of noise are increasingly using LDPC codes. 1. LDPC Encoding Technique The proper form of H matrix is derived from the given matrix by doing multiple row operations as shown above. In the above, H is parity check matrix and G is generator matrix. If you consider matrix H as [-P' | I] then matrix G will be...

Alamouti Scheme for 2x2 MIMO in MATLAB

📘 Overview & Theory 🧮 MATLAB Code for Alamouti Scheme 🧮 MATLAB Code for BER vs. SNR for Alamouti Scheme 🧮 Alamouti Scheme Simulator 🧮 Alamouti Scheme Transmission Table 📚 Further Reading    Read about the Alamouti Scheme first MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO % Clear any existing data and figures clc; clear; close all; % Define system parameters transmitAntennas = 2; % Number of antennas at the transmitter receiveAntennas = 2; % Number of antennas at the receiver symbolCount = 1000000; % Number of symbols to transmit SNR_dB = 15; % Signal-to-Noise Ratio in decibels % Generate random binary data for transmission rng(10); % Set seed for reproducibility transmitData = randi([0, 1], transmitAntennas, symbolCount); % Perform Binary Phase Shift Keying (BPSK) modulation modulatedSymbols = 1 - 2 * transmitData; % Define Alamouti's Precoding Matrix precodingMatrix = [1 1; -1i 1i]; % Encode and transmit dat...

What is a Chirp Signal?

📘 Overview & Theory 🧮 MATLAB Code 🧮 Chirp Signal Simuator 📚 Further Reading   Chirp signals are often used to find target objects. In a chirp signal, the frequency varies with time. For up-chirp signals, frequency increases with time. Oppositely, for down-chirp signals, the frequency decreases with time. Advantages of a chirp signal over a single-toned signal Better resolution Better Security The wide bandwidth of a chirp signal allows for capturing more detailed info about the target or object In a chirp signal, pulse compression enhances resolution by concentrating the signal energy into a shorter duration of time It is less susceptible to noise  It improves signal to noise ratio Up-Chirp Signal A sinusoidal up-chirp signal is denoted as Where A is the amplitude of this signal             f0 is the starting frequency of the chirp at t=0             Î± is the chirp rate or the...

ASK, FSK, and PSK

📘 Overview 📘 Amplitude Shift Keying (ASK) 📘 Frequency Shift Keying (FSK) 📘 Phase Shift Keying (PSK) 📘 Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? 🧮 MATLAB Codes 📘 Simulator for binary ASK, FSK, and PSK Modulation 📚 Further Reading ASK or OFF ON Keying ASK is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals. For example, "+5 Volt" (upper level) and "0 Volt" (lower level). To transmit binary bit "1", the transmitter sends "+5 Volts", and for bit "0", it sends no power. The receiver uses filters to detect whether a binary "1" or "0" was transmitted. ...