Skip to main content

Constellation Diagram of FSK in Detail


 

Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK). Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel.

Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'.

Simulator for 2-FSK Constellation Diagram

Simulator for 2-FSK Constellation Diagram

Energy per bit (Eb):

For transmission of binary ‘1’

Starting from the passband signal \( s_1(t)=A_c\cos(2\pi f_1 t) \) over \(0\le t\le T_b\):

\[ E_b \;=\; \int_{0}^{T_b}\!\big(A_c\cos 2\pi f_1 t\big)^2\,dt \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\cos(4\pi f_1 t)\,dt \] \[ \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; 0 \quad \text{(second term averages to 0 over a full cycle)} \;=\; \frac{A_c^2}{2}\,T_b . \]

For transmission of binary ‘0’

Similarly for \( s_2(t)=A_c\cos(2\pi f_2 t) \):

\[ E_b \;=\; \int_{0}^{T_b}\!\big(A_c\cos 2\pi f_2 t\big)^2\,dt \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\cos(4\pi f_2 t)\,dt \] \[ \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; 0 \;=\; \frac{A_c^2}{2}\,T_b . \]

Amplitude in terms of \(E_b\)

\[ A_c \;=\; \sqrt{\frac{2E_b}{T_b}} \;. \]

Constellation Diagram of FSK

In Binary FSK (BFSK), two orthogonal signals represent binary symbols:
\( s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t), \quad 0 \leq t \leq T_b \)
\( s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t), \quad 0 \leq t \leq T_b \)

Symbol 0: \( f_1 \)
Symbol 1: \( f_2 \)

The points lie on orthogonal axes because \( s_1(t) \) and \( s_2(t) \) are orthogonal signals.







Fig 1: Constellation Diagram of FSK

 In the above figure values are in terms of the normalized functions. √(2/Tb).cos2Пf1t and √(2/Tb).cos2Пf2t are orthogonal functions in the interval (0, Tb). And the distance between signaling points, d12 = √(2Eb)
By interpreting these functions as vectors, the phase angle between the resulting vectors will be 90 degrees.   

Using more frequency shifts to display multiple symbols or bits of digital data is known as high-order frequency shift keying (FSK). Every frequency in FSK corresponds to a distinct symbol or collection of bits. Higher data rates are possible with high-order FSK schemes, but they may also be more vulnerable to channel impairments and noise. 

 

Also read about

  1.  Constellation Diagram of ASK in detail
  2. Constellation Diagram of PSK in detail
  3. Baseband ASK, FSK, and PSK

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Alamouti Scheme for 2x2 MIMO in MATLAB

📘 Overview & Theory 🧮 MATLAB Code for Alamouti Scheme 🧮 MATLAB Code for BER vs. SNR for Alamouti Scheme 🧮 Alamouti Scheme Simulator 🧮 Alamouti Scheme Transmission Table 📚 Further Reading    Read about the Alamouti Scheme first MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO % Clear any existing data and figures clc; clear; close all; % Define system parameters transmitAntennas = 2; % Number of antennas at the transmitter receiveAntennas = 2; % Number of antennas at the receiver symbolCount = 1000000; % Number of symbols to transmit SNR_dB = 15; % Signal-to-Noise Ratio in decibels % Generate random binary data for transmission rng(10); % Set seed for reproducibility transmitData = randi([0, 1], transmitAntennas, symbolCount); % Perform Binary Phase Shift Keying (BPSK) modulation modulatedSymbols = 1 - 2 * transmitData; % Define Alamouti's Precoding Matrix precodingMatrix = [1 1; -1i 1i]; % Encode and transmit dat...

LDPC Encoding and Decoding Techniques

📘 Overview & Theory 🧮 LDPC Encoding Techniques 🧮 LDPC Decoding Techniques 📚 Further Reading 'LDPC' is the abbreviation for 'low density parity check'. LDPC code H matrix contains very few amount of 1's and mostly zeroes. LDPC codes are error correcting code. Using LDPC codes, channel capacities that are close to the theoretical Shannon limit can be achieved.  Low density parity check (LDPC) codes are linear error-correcting block code suitable for error correction in a large block sizes transmitted via very noisy channel. Applications requiring highly reliable information transport over bandwidth restrictions in the presence of noise are increasingly using LDPC codes. 1. LDPC Encoding Technique The proper form of H matrix is derived from the given matrix by doing multiple row operations as shown above. In the above, H is parity check matrix and G is generator matrix. If you consider matrix H as [-P' | I] then matrix G will be...

What is a Chirp Signal?

📘 Overview & Theory 🧮 MATLAB Code 🧮 Chirp Signal Simuator 📚 Further Reading   Chirp signals are often used to find target objects. In a chirp signal, the frequency varies with time. For up-chirp signals, frequency increases with time. Oppositely, for down-chirp signals, the frequency decreases with time. Advantages of a chirp signal over a single-toned signal Better resolution Better Security The wide bandwidth of a chirp signal allows for capturing more detailed info about the target or object In a chirp signal, pulse compression enhances resolution by concentrating the signal energy into a shorter duration of time It is less susceptible to noise  It improves signal to noise ratio Up-Chirp Signal A sinusoidal up-chirp signal is denoted as Where A is the amplitude of this signal             f0 is the starting frequency of the chirp at t=0             Î± is the chirp rate or the...

ASK, FSK, and PSK

📘 Overview 📘 Amplitude Shift Keying (ASK) 📘 Frequency Shift Keying (FSK) 📘 Phase Shift Keying (PSK) 📘 Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? 🧮 MATLAB Codes 📘 Simulator for binary ASK, FSK, and PSK Modulation 📚 Further Reading ASK or OFF ON Keying ASK is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals. For example, "+5 Volt" (upper level) and "0 Volt" (lower level). To transmit binary bit "1", the transmitter sends "+5 Volts", and for bit "0", it sends no power. The receiver uses filters to detect whether a binary "1" or "0" was transmitted. ...