Skip to main content

Constellation Diagram of FSK in Detail


 

Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK). Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel.

Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'.

Simulator for 2-FSK Constellation Diagram

Simulator for 2-FSK Constellation Diagram

Energy per bit (Eb):

For transmission of binary ‘1’

Starting from the passband signal \( s_1(t)=A_c\cos(2\pi f_1 t) \) over \(0\le t\le T_b\):

\[ E_b \;=\; \int_{0}^{T_b}\!\big(A_c\cos 2\pi f_1 t\big)^2\,dt \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\cos(4\pi f_1 t)\,dt \] \[ \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; 0 \quad \text{(second term averages to 0 over a full cycle)} \;=\; \frac{A_c^2}{2}\,T_b . \]

For transmission of binary ‘0’

Similarly for \( s_2(t)=A_c\cos(2\pi f_2 t) \):

\[ E_b \;=\; \int_{0}^{T_b}\!\big(A_c\cos 2\pi f_2 t\big)^2\,dt \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\cos(4\pi f_2 t)\,dt \] \[ \;=\; \int_{0}^{T_b}\!\frac{A_c^2}{2}\,dt \;+\; 0 \;=\; \frac{A_c^2}{2}\,T_b . \]

Amplitude in terms of \(E_b\)

\[ A_c \;=\; \sqrt{\frac{2E_b}{T_b}} \;. \]

Constellation Diagram of FSK

In Binary FSK (BFSK), two orthogonal signals represent binary symbols:
\( s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t), \quad 0 \leq t \leq T_b \)
\( s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t), \quad 0 \leq t \leq T_b \)

Symbol 0: \( f_1 \)
Symbol 1: \( f_2 \)

The points lie on orthogonal axes because \( s_1(t) \) and \( s_2(t) \) are orthogonal signals.







Fig 1: Constellation Diagram of FSK

 In the above figure values are in terms of the normalized functions. √(2/Tb).cos2Пf1t and √(2/Tb).cos2Пf2t are orthogonal functions in the interval (0, Tb). And the distance between signaling points, d12 = √(2Eb)
By interpreting these functions as vectors, the phase angle between the resulting vectors will be 90 degrees.   

Using more frequency shifts to display multiple symbols or bits of digital data is known as high-order frequency shift keying (FSK). Every frequency in FSK corresponds to a distinct symbol or collection of bits. Higher data rates are possible with high-order FSK schemes, but they may also be more vulnerable to channel impairments and noise. 

 

Also read about

  1.  Constellation Diagram of ASK in detail
  2. Constellation Diagram of PSK in detail
  3. Baseband ASK, FSK, and PSK

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...