Skip to main content

OFDM in MATLAB


 

MATLAB Script

% The code is written by SalimWireless.Com

1. Initialization

clc;
clear all;
close all;


2. Generate Random Bits

% Generate random bits
numBits = 100;
bits = randi([0, 1], 1, numBits);


3. Define Parameters

% Define parameters
numSubcarriers = 4; % Number of subcarriers
numPilotSymbols = 3; % Number of pilot symbols
cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length)


4. Add Cyclic Prefix

% Add cyclic prefix
dataWithCP = [bits(end - cpLength + 1:end), bits];


5. Insert Pilot Symbols

% Insert pilot symbols
pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern)
dataWithPilots = [pilotSymbols, dataWithCP];

 

6. Perform OFDM Modulation (IFFT)

% Perform OFDM modulation (IFFT)
dataMatrix = reshape(dataWithPilots, numSubcarriers, []);
ofdmSignal = ifft(dataMatrix, numSubcarriers);
ofdmSignal = reshape(ofdmSignal, 1, []);


7. Display the Generated Data

% Display the generated data
disp("Original Bits:");
disp(bits);
disp("Data with Cyclic Prefix and Pilots:");
disp(dataWithPilots);
disp("OFDM Signal:");
disp(ofdmSignal);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Demodulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


8. Demodulation

% Perform FFT on the received signal
%ofdmSignal = awgn(ofdmSignal, 1000);
ofdmSignal = reshape(ofdmSignal, numSubcarriers, []);
rxSignal = fft(ofdmSignal, numSubcarriers);
%rxSignal = [rxSignal(1,:) rxSignal(2,:) rxSignal(3,:) rxSignal(4,:)];


9. Remove Cyclic Prefix

% Remove cyclic prefix
rxSignalNoCP = rxSignal(cpLength + 1:end);


10. Extract Data Symbols and Discard Pilot Symbols

% Extract data symbols and discard pilot symbols
dataSymbols = rxSignalNoCP(numPilotSymbols + 1:end);


11. Demodulate the Symbols Using Thresholding

% Demodulate the symbols using thresholding
threshold = 0;
demodulatedBits = (real(dataSymbols) > threshold);


12. Plot the Original and Received Bits

figure(1)
stem(bits);
legend("Original Information Bits")

figure(2)
stem(demodulatedBits);
legend("Received Bits")

Output

 

 
Fig 1: Original Information Bits
 
 
 
 
 
Fig 2: OFDM Signal
 
 
 
 
Fig 3: Received Demodulated Bits

 

Copy the MATLAB Code above from here

 

 

MATLAB Code for OFDM using QPSK

% The code is written by SalimWireless.Com
clc;
clear all;
close all;

% Generate random bits (must be even for QPSK)
numBits = 20;
if mod(numBits, 2) ~= 0
numBits = numBits + 1; % Make even
end
bits = randi([0, 1], 1, numBits);

% QPSK Modulation (2 bits per symbol)
bitPairs = reshape(bits, 2, []).';
qpskSymbols = (1/sqrt(2)) * ((2*bitPairs(:,1)-1) + 1j*(2*bitPairs(:,2)-1)); % Gray-coded

% Parameters
numSubcarriers = 4; % Number of OFDM subcarriers
numPilotSymbols = 3; % Number of pilot symbols
cpLength = ceil(length(qpskSymbols) / 4); % Cyclic prefix length

% Insert pilot symbols
pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (BPSK pilots)
dataWithPilots = [pilotSymbols, qpskSymbols.'];

% Add cyclic prefix
dataWithCP = [dataWithPilots(end - cpLength + 1:end), dataWithPilots];

% Reshape and perform IFFT (OFDM modulation)
dataMatrix = reshape(dataWithCP, numSubcarriers, []);
ofdmSignal = ifft(dataMatrix, numSubcarriers);
ofdmSignal1 = reshape(ofdmSignal, 1, []);

% Display
disp("Original Bits:");
disp(bits);
disp("QPSK Symbols:");
disp(qpskSymbols.');
disp("Data with CP and Pilots:");
disp(dataWithCP);
disp("OFDM Signal:");
disp(ofdmSignal1);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Demodulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reshape back to subcarrier-wise blocks and FFT
ofdmRxMatrix = reshape(ofdmSignal1, numSubcarriers, []);
rxSignal = fft(ofdmRxMatrix, numSubcarriers);

% Remove cyclic prefix
rxSignal1D = reshape(rxSignal, 1, []);
rxSignalNoCP = rxSignal1D(cpLength + 1:end);

% Remove pilots
rxDataSymbols = rxSignalNoCP(numPilotSymbols + 1:end);

% QPSK Demodulation
demodBits = zeros(1, 2*length(rxDataSymbols));
demodBits(1:2:end) = real(rxDataSymbols) > 0;
demodBits(2:2:end) = imag(rxDataSymbols) > 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)
stem(bits);
title("Original Bits");
xlabel("Bit Index"); ylabel("Bit Value");
legend("Original Bits");

figure(2)
hReal = stem(real(ofdmSignal1), 'r', 'DisplayName', 'Real Part');
hold on;
hImag = stem(imag(ofdmSignal1), 'b', 'DisplayName', 'Imaginary Part');
set(hReal, 'Marker', 'o', 'LineWidth', 1.5);
set(hImag, 'Marker', 'x', 'LineWidth', 1.5);
grid on;
title('OFDM Signal (Time Domain)');
xlabel('Sample Index');
ylabel('Amplitude');
legend;
hold off;

figure(3)
stem(demodBits);
title("Demodulated Bits");
xlabel("Bit Index"); ylabel("Bit Value");
legend("Demodulated Bits");

% Optional: Calculate BER
numErrors = sum(bits ~= demodBits);
ber = numErrors / numBits;
fprintf("Bit Error Rate (BER): %.4f\n", ber);



Output

 
 
 
 
 
  
 
 
 

 

MATLAB Code for OFDM Subcarriers (using 16-QAM)

clc;
clear;
close all;

% OFDM System with 16-QAM and Cooley-Tukey FFT/IFFT

% Parameters
N = 64; % Number of OFDM subcarriers
M = 16; % Modulation order (16-QAM -> M = 16)
nSymbols = 100;% Number of OFDM symbols
Ncp = 16; % Length of cyclic prefix

% Generate random data for transmission (0 to M-1 for 16-QAM)
data = randi([0 M-1], nSymbols, N);

% 16-QAM modulation of the data using custom function
modData = zeros(nSymbols, N);
for i = 1:nSymbols
modData(i, :) = qammod(data(i, :), M);
end

% Perform IFFT using Cooley-Tukey to generate the time domain OFDM signal
ofdmTimeSignal = zeros(size(modData));
for i = 1:nSymbols
ofdmTimeSignal(i, :) = ifft(modData(i, :));
end

% Add cyclic prefix
cyclicPrefix = ofdmTimeSignal(:, end-Ncp+1:end); % Extract cyclic prefix
ofdmWithCP = [cyclicPrefix ofdmTimeSignal]; % Add cyclic prefix to the signal

%% Plot Subcarriers in Frequency Domain (before IFFT)
figure;
stem(0:N-1, abs(modData(100, :))); % Plot absolute value of the subcarriers for the first symbol
title('Subcarriers in Frequency Domain for 1st OFDM Symbol (Before IFFT)');
xlabel('Subcarrier Index');
ylabel('Magnitude');

%% Plot Time Domain OFDM Signal (after IFFT)
figure;
plot(real(ofdmTimeSignal(1, :))); % Plot real part of the OFDM time signal for the first symbol
title('OFDM Signal in Time Domain for 1st OFDM Symbol (Without CP)');
xlabel('Time Sample Index');
ylabel('Amplitude');

%% Plot Time Domain OFDM Signal with Cyclic Prefix
figure;
plot(real(ofdmWithCP(1, :))); % Plot real part of the OFDM time signal with CP for the first symbol
title('OFDM Signal in Time Domain for 1st OFDM Symbol (With Cyclic Prefix)');
xlabel('Time Sample Index');
ylabel('Amplitude');

%% Receiver Side - Remove Cyclic Prefix and Demodulate
% Remove cyclic prefix
receivedSignal = ofdmWithCP(:, Ncp+1:end); % Remove cyclic prefix

% Apply FFT using Cooley-Tukey to recover the received subcarriers (back to frequency domain)
receivedSubcarriers = zeros(size(receivedSignal));
for i = 1:nSymbols
receivedSubcarriers(i, :) = fft(receivedSignal(i, :));
end

% 16-QAM Demodulation of the received subcarriers using custom function
receivedData = zeros(nSymbols, N);
for i = 1:nSymbols
receivedData(i, :) = qamdemod(receivedSubcarriers(i, :), M);
end

% Calculate symbol errors
numErrors = sum(data(:) ~= receivedData(:));
fprintf('Number of symbol errors: %d\n', numErrors);

%% Plot Received Subcarriers in Frequency Domain (after FFT at the receiver)
figure;
stem(0:N-1, abs(receivedSubcarriers(100, :))); % Plot absolute value of received subcarriers for the first symbol
title('Received Subcarriers in Frequency Domain for 1st OFDM Symbol (After FFT)');
xlabel('Subcarrier Index');
ylabel('Magnitude');

%% Plot Transmitted Data Constellation (Before IFFT)
figure;
scatterplot(modData(1, :)); % Plot for the first OFDM symbol
title('Transmitted 16-QAM Symbols for 1st OFDM Symbol');
xlabel('In-phase');
ylabel('Quadrature');

%% Plot Received Data Constellation (After Demodulation)
receivedModData = qammod(receivedData(1, :), M); % Map back for plotting
figure;
scatterplot(receivedModData);
title('Received 16-QAM Symbols for 1st OFDM Symbol');
xlabel('In-phase');
ylabel('Quadrature');

 Output

 
















Copy the MATLAB code above from here

 

Read more about

[1] OFDM in details

[2] Structure of an OFDM packet

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

Online Simulator for Constellation Diagram of M-ary PSK

Constellation Diagram of M-ary PSK Bitstream (e.g. 1,0,1,1): Generate Message Modulation Order (M): M must be a power of 2 (e.g., 2, 4, 8, 16) Plot Constellation Diagram Explore Signal Processing Simulations Further Reading   Online Simulator for M-ary PSK Online Simulator for ASK, FSK, and PSK   Explore DSP Simulations

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...