Skip to main content

OFDM in MATLAB


 

MATLAB Script

% The code is written by SalimWireless.Com

1. Initialization

clc;
clear all;
close all;


2. Generate Random Bits

% Generate random bits
numBits = 100;
bits = randi([0, 1], 1, numBits);


3. Define Parameters

% Define parameters
numSubcarriers = 4; % Number of subcarriers
numPilotSymbols = 3; % Number of pilot symbols
cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length)


4. Add Cyclic Prefix

% Add cyclic prefix
dataWithCP = [bits(end - cpLength + 1:end), bits];


5. Insert Pilot Symbols

% Insert pilot symbols
pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern)
dataWithPilots = [pilotSymbols, dataWithCP];

 

6. Perform OFDM Modulation (IFFT)

% Perform OFDM modulation (IFFT)
dataMatrix = reshape(dataWithPilots, numSubcarriers, []);
ofdmSignal = ifft(dataMatrix, numSubcarriers);
ofdmSignal = reshape(ofdmSignal, 1, []);


7. Display the Generated Data

% Display the generated data
disp("Original Bits:");
disp(bits);
disp("Data with Cyclic Prefix and Pilots:");
disp(dataWithPilots);
disp("OFDM Signal:");
disp(ofdmSignal);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Demodulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


8. Demodulation

% Perform FFT on the received signal
%ofdmSignal = awgn(ofdmSignal, 1000);
ofdmSignal = reshape(ofdmSignal, numSubcarriers, []);
rxSignal = fft(ofdmSignal, numSubcarriers);
%rxSignal = [rxSignal(1,:) rxSignal(2,:) rxSignal(3,:) rxSignal(4,:)];


9. Remove Cyclic Prefix

% Remove cyclic prefix
rxSignalNoCP = rxSignal(cpLength + 1:end);


10. Extract Data Symbols and Discard Pilot Symbols

% Extract data symbols and discard pilot symbols
dataSymbols = rxSignalNoCP(numPilotSymbols + 1:end);


11. Demodulate the Symbols Using Thresholding

% Demodulate the symbols using thresholding
threshold = 0;
demodulatedBits = (real(dataSymbols) > threshold);


12. Plot the Original and Received Bits

figure(1)
stem(bits);
legend("Original Information Bits")

figure(2)
stem(demodulatedBits);
legend("Received Bits")

Output

 

 
Fig 1: Original Information Bits
 
 
 
 
 
Fig 2: OFDM Signal
 
 
 
 
Fig 3: Received Demodulated Bits

 

Copy the MATLAB Code above from here

 

 

MATLAB Code for OFDM using QPSK

% The code is written by SalimWireless.Com
clc;
clear all;
close all;

% Generate random bits (must be even for QPSK)
numBits = 20;
if mod(numBits, 2) ~= 0
numBits = numBits + 1; % Make even
end
bits = randi([0, 1], 1, numBits);

% QPSK Modulation (2 bits per symbol)
bitPairs = reshape(bits, 2, []).';
qpskSymbols = (1/sqrt(2)) * ((2*bitPairs(:,1)-1) + 1j*(2*bitPairs(:,2)-1)); % Gray-coded

% Parameters
numSubcarriers = 4; % Number of OFDM subcarriers
numPilotSymbols = 3; % Number of pilot symbols
cpLength = ceil(length(qpskSymbols) / 4); % Cyclic prefix length

% Insert pilot symbols
pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (BPSK pilots)
dataWithPilots = [pilotSymbols, qpskSymbols.'];

% Add cyclic prefix
dataWithCP = [dataWithPilots(end - cpLength + 1:end), dataWithPilots];

% Reshape and perform IFFT (OFDM modulation)
dataMatrix = reshape(dataWithCP, numSubcarriers, []);
ofdmSignal = ifft(dataMatrix, numSubcarriers);
ofdmSignal1 = reshape(ofdmSignal, 1, []);

% Display
disp("Original Bits:");
disp(bits);
disp("QPSK Symbols:");
disp(qpskSymbols.');
disp("Data with CP and Pilots:");
disp(dataWithCP);
disp("OFDM Signal:");
disp(ofdmSignal1);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Demodulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reshape back to subcarrier-wise blocks and FFT
ofdmRxMatrix = reshape(ofdmSignal1, numSubcarriers, []);
rxSignal = fft(ofdmRxMatrix, numSubcarriers);

% Remove cyclic prefix
rxSignal1D = reshape(rxSignal, 1, []);
rxSignalNoCP = rxSignal1D(cpLength + 1:end);

% Remove pilots
rxDataSymbols = rxSignalNoCP(numPilotSymbols + 1:end);

% QPSK Demodulation
demodBits = zeros(1, 2*length(rxDataSymbols));
demodBits(1:2:end) = real(rxDataSymbols) > 0;
demodBits(2:2:end) = imag(rxDataSymbols) > 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)
stem(bits);
title("Original Bits");
xlabel("Bit Index"); ylabel("Bit Value");
legend("Original Bits");

figure(2)
hReal = stem(real(ofdmSignal1), 'r', 'DisplayName', 'Real Part');
hold on;
hImag = stem(imag(ofdmSignal1), 'b', 'DisplayName', 'Imaginary Part');
set(hReal, 'Marker', 'o', 'LineWidth', 1.5);
set(hImag, 'Marker', 'x', 'LineWidth', 1.5);
grid on;
title('OFDM Signal (Time Domain)');
xlabel('Sample Index');
ylabel('Amplitude');
legend;
hold off;

figure(3)
stem(demodBits);
title("Demodulated Bits");
xlabel("Bit Index"); ylabel("Bit Value");
legend("Demodulated Bits");

% Optional: Calculate BER
numErrors = sum(bits ~= demodBits);
ber = numErrors / numBits;
fprintf("Bit Error Rate (BER): %.4f\n", ber);



Output

 
 
 
 
 
  
 
 
 

 

MATLAB Code for OFDM Subcarriers (using 16-QAM)

clc;
clear;
close all;

% OFDM System with 16-QAM and Cooley-Tukey FFT/IFFT

% Parameters
N = 64; % Number of OFDM subcarriers
M = 16; % Modulation order (16-QAM -> M = 16)
nSymbols = 100;% Number of OFDM symbols
Ncp = 16; % Length of cyclic prefix

% Generate random data for transmission (0 to M-1 for 16-QAM)
data = randi([0 M-1], nSymbols, N);

% 16-QAM modulation of the data using custom function
modData = zeros(nSymbols, N);
for i = 1:nSymbols
modData(i, :) = qammod(data(i, :), M);
end

% Perform IFFT using Cooley-Tukey to generate the time domain OFDM signal
ofdmTimeSignal = zeros(size(modData));
for i = 1:nSymbols
ofdmTimeSignal(i, :) = ifft(modData(i, :));
end

% Add cyclic prefix
cyclicPrefix = ofdmTimeSignal(:, end-Ncp+1:end); % Extract cyclic prefix
ofdmWithCP = [cyclicPrefix ofdmTimeSignal]; % Add cyclic prefix to the signal

%% Plot Subcarriers in Frequency Domain (before IFFT)
figure;
stem(0:N-1, abs(modData(100, :))); % Plot absolute value of the subcarriers for the first symbol
title('Subcarriers in Frequency Domain for 1st OFDM Symbol (Before IFFT)');
xlabel('Subcarrier Index');
ylabel('Magnitude');

%% Plot Time Domain OFDM Signal (after IFFT)
figure;
plot(real(ofdmTimeSignal(1, :))); % Plot real part of the OFDM time signal for the first symbol
title('OFDM Signal in Time Domain for 1st OFDM Symbol (Without CP)');
xlabel('Time Sample Index');
ylabel('Amplitude');

%% Plot Time Domain OFDM Signal with Cyclic Prefix
figure;
plot(real(ofdmWithCP(1, :))); % Plot real part of the OFDM time signal with CP for the first symbol
title('OFDM Signal in Time Domain for 1st OFDM Symbol (With Cyclic Prefix)');
xlabel('Time Sample Index');
ylabel('Amplitude');

%% Receiver Side - Remove Cyclic Prefix and Demodulate
% Remove cyclic prefix
receivedSignal = ofdmWithCP(:, Ncp+1:end); % Remove cyclic prefix

% Apply FFT using Cooley-Tukey to recover the received subcarriers (back to frequency domain)
receivedSubcarriers = zeros(size(receivedSignal));
for i = 1:nSymbols
receivedSubcarriers(i, :) = fft(receivedSignal(i, :));
end

% 16-QAM Demodulation of the received subcarriers using custom function
receivedData = zeros(nSymbols, N);
for i = 1:nSymbols
receivedData(i, :) = qamdemod(receivedSubcarriers(i, :), M);
end

% Calculate symbol errors
numErrors = sum(data(:) ~= receivedData(:));
fprintf('Number of symbol errors: %d\n', numErrors);

%% Plot Received Subcarriers in Frequency Domain (after FFT at the receiver)
figure;
stem(0:N-1, abs(receivedSubcarriers(100, :))); % Plot absolute value of received subcarriers for the first symbol
title('Received Subcarriers in Frequency Domain for 1st OFDM Symbol (After FFT)');
xlabel('Subcarrier Index');
ylabel('Magnitude');

%% Plot Transmitted Data Constellation (Before IFFT)
figure;
scatterplot(modData(1, :)); % Plot for the first OFDM symbol
title('Transmitted 16-QAM Symbols for 1st OFDM Symbol');
xlabel('In-phase');
ylabel('Quadrature');

%% Plot Received Data Constellation (After Demodulation)
receivedModData = qammod(receivedData(1, :), M); % Map back for plotting
figure;
scatterplot(receivedModData);
title('Received 16-QAM Symbols for 1st OFDM Symbol');
xlabel('In-phase');
ylabel('Quadrature');

 Output

 
















Copy the MATLAB code above from here

 

Read more about

[1] OFDM in details

[2] Structure of an OFDM packet

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

Online Channel Impulse Response Simulator

  Fundamental Theory of Channel Impulse Response The fundamental theory behind the channel impulse response in wireless communication often involves complex exponential components such as: \( h(t) = \sum_{i=1}^{L} a_i \cdot \delta(t - \tau_i) \cdot e^{j\theta_i} \) Where: \( a_i \) is the amplitude of the \( i^{th} \) path \( \tau_i \) is the delay of the \( i^{th} \) path \( \theta_i \) is the phase shift (often due to Doppler effect, reflection, etc.) \( e^{j\theta_i} \) introduces a phase rotation (complex exponential) The convolution \( x(t) * h(t) \) gives the received signal So, instead of representing the channel with only real-valued amplitudes, each path can be more accurately modeled using a complex gain : \( h[n] = a_i \cdot e^{j\theta_i} \) Channel Impulse Response Simulator Input Signal (Unit Impulse x[n]) Multipath Delays (samples): Path Ampli...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...