Skip to main content

OFDM in MATLAB


 

MATLAB Script

% The code is written by SalimWireless.Com

1. Initialization

clc;
clear all;
close all;


2. Generate Random Bits

% Generate random bits
numBits = 100;
bits = randi([0, 1], 1, numBits);


3. Define Parameters

% Define parameters
numSubcarriers = 4; % Number of subcarriers
numPilotSymbols = 3; % Number of pilot symbols
cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length)


4. Add Cyclic Prefix

% Add cyclic prefix
dataWithCP = [bits(end - cpLength + 1:end), bits];


5. Insert Pilot Symbols

% Insert pilot symbols
pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern)
dataWithPilots = [pilotSymbols, dataWithCP];

 

6. Perform OFDM Modulation (IFFT)

% Perform OFDM modulation (IFFT)
dataMatrix = reshape(dataWithPilots, numSubcarriers, []);
ofdmSignal = ifft(dataMatrix, numSubcarriers);
ofdmSignal = reshape(ofdmSignal, 1, []);


7. Display the Generated Data

% Display the generated data
disp("Original Bits:");
disp(bits);
disp("Data with Cyclic Prefix and Pilots:");
disp(dataWithPilots);
disp("OFDM Signal:");
disp(ofdmSignal);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Demodulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


8. Demodulation

% Perform FFT on the received signal
%ofdmSignal = awgn(ofdmSignal, 1000);
ofdmSignal = reshape(ofdmSignal, numSubcarriers, []);
rxSignal = fft(ofdmSignal, numSubcarriers);
%rxSignal = [rxSignal(1,:) rxSignal(2,:) rxSignal(3,:) rxSignal(4,:)];


9. Remove Cyclic Prefix

% Remove cyclic prefix
rxSignalNoCP = rxSignal(cpLength + 1:end);


10. Extract Data Symbols and Discard Pilot Symbols

% Extract data symbols and discard pilot symbols
dataSymbols = rxSignalNoCP(numPilotSymbols + 1:end);


11. Demodulate the Symbols Using Thresholding

% Demodulate the symbols using thresholding
threshold = 0;
demodulatedBits = (real(dataSymbols) > threshold);


12. Plot the Original and Received Bits

figure(1)
stem(bits);
legend("Original Information Bits")

figure(2)
stem(demodulatedBits);
legend("Received Bits")

Output

 

 
Fig 1: Original Information Bits
 
 
 
 
 
Fig 2: OFDM Signal
 
 
 
 
Fig 3: Received Demodulated Bits

 

Copy the MATLAB Code above from here

 

 

MATLAB Code for OFDM using QPSK

% The code is written by SalimWireless.Com
clc;
clear all;
close all;

% Generate random bits (must be even for QPSK)
numBits = 20;
if mod(numBits, 2) ~= 0
numBits = numBits + 1; % Make even
end
bits = randi([0, 1], 1, numBits);

% QPSK Modulation (2 bits per symbol)
bitPairs = reshape(bits, 2, []).';
qpskSymbols = (1/sqrt(2)) * ((2*bitPairs(:,1)-1) + 1j*(2*bitPairs(:,2)-1)); % Gray-coded

% Parameters
numSubcarriers = 4; % Number of OFDM subcarriers
numPilotSymbols = 3; % Number of pilot symbols
cpLength = ceil(length(qpskSymbols) / 4); % Cyclic prefix length

% Insert pilot symbols
pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (BPSK pilots)
dataWithPilots = [pilotSymbols, qpskSymbols.'];

% Add cyclic prefix
dataWithCP = [dataWithPilots(end - cpLength + 1:end), dataWithPilots];

% Reshape and perform IFFT (OFDM modulation)
dataMatrix = reshape(dataWithCP, numSubcarriers, []);
ofdmSignal = ifft(dataMatrix, numSubcarriers);
ofdmSignal1 = reshape(ofdmSignal, 1, []);

% Display
disp("Original Bits:");
disp(bits);
disp("QPSK Symbols:");
disp(qpskSymbols.');
disp("Data with CP and Pilots:");
disp(dataWithCP);
disp("OFDM Signal:");
disp(ofdmSignal1);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Demodulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reshape back to subcarrier-wise blocks and FFT
ofdmRxMatrix = reshape(ofdmSignal1, numSubcarriers, []);
rxSignal = fft(ofdmRxMatrix, numSubcarriers);

% Remove cyclic prefix
rxSignal1D = reshape(rxSignal, 1, []);
rxSignalNoCP = rxSignal1D(cpLength + 1:end);

% Remove pilots
rxDataSymbols = rxSignalNoCP(numPilotSymbols + 1:end);

% QPSK Demodulation
demodBits = zeros(1, 2*length(rxDataSymbols));
demodBits(1:2:end) = real(rxDataSymbols) > 0;
demodBits(2:2:end) = imag(rxDataSymbols) > 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)
stem(bits);
title("Original Bits");
xlabel("Bit Index"); ylabel("Bit Value");
legend("Original Bits");

figure(2)
hReal = stem(real(ofdmSignal1), 'r', 'DisplayName', 'Real Part');
hold on;
hImag = stem(imag(ofdmSignal1), 'b', 'DisplayName', 'Imaginary Part');
set(hReal, 'Marker', 'o', 'LineWidth', 1.5);
set(hImag, 'Marker', 'x', 'LineWidth', 1.5);
grid on;
title('OFDM Signal (Time Domain)');
xlabel('Sample Index');
ylabel('Amplitude');
legend;
hold off;

figure(3)
stem(demodBits);
title("Demodulated Bits");
xlabel("Bit Index"); ylabel("Bit Value");
legend("Demodulated Bits");

% Optional: Calculate BER
numErrors = sum(bits ~= demodBits);
ber = numErrors / numBits;
fprintf("Bit Error Rate (BER): %.4f\n", ber);



Output

 
 
 
 
 
  
 
 
 

 

MATLAB Code for OFDM Subcarriers (using 16-QAM)

clc;
clear;
close all;

% OFDM System with 16-QAM and Cooley-Tukey FFT/IFFT

% Parameters
N = 64; % Number of OFDM subcarriers
M = 16; % Modulation order (16-QAM -> M = 16)
nSymbols = 100;% Number of OFDM symbols
Ncp = 16; % Length of cyclic prefix

% Generate random data for transmission (0 to M-1 for 16-QAM)
data = randi([0 M-1], nSymbols, N);

% 16-QAM modulation of the data using custom function
modData = zeros(nSymbols, N);
for i = 1:nSymbols
modData(i, :) = qammod(data(i, :), M);
end

% Perform IFFT using Cooley-Tukey to generate the time domain OFDM signal
ofdmTimeSignal = zeros(size(modData));
for i = 1:nSymbols
ofdmTimeSignal(i, :) = ifft(modData(i, :));
end

% Add cyclic prefix
cyclicPrefix = ofdmTimeSignal(:, end-Ncp+1:end); % Extract cyclic prefix
ofdmWithCP = [cyclicPrefix ofdmTimeSignal]; % Add cyclic prefix to the signal

%% Plot Subcarriers in Frequency Domain (before IFFT)
figure;
stem(0:N-1, abs(modData(100, :))); % Plot absolute value of the subcarriers for the first symbol
title('Subcarriers in Frequency Domain for 1st OFDM Symbol (Before IFFT)');
xlabel('Subcarrier Index');
ylabel('Magnitude');

%% Plot Time Domain OFDM Signal (after IFFT)
figure;
plot(real(ofdmTimeSignal(1, :))); % Plot real part of the OFDM time signal for the first symbol
title('OFDM Signal in Time Domain for 1st OFDM Symbol (Without CP)');
xlabel('Time Sample Index');
ylabel('Amplitude');

%% Plot Time Domain OFDM Signal with Cyclic Prefix
figure;
plot(real(ofdmWithCP(1, :))); % Plot real part of the OFDM time signal with CP for the first symbol
title('OFDM Signal in Time Domain for 1st OFDM Symbol (With Cyclic Prefix)');
xlabel('Time Sample Index');
ylabel('Amplitude');

%% Receiver Side - Remove Cyclic Prefix and Demodulate
% Remove cyclic prefix
receivedSignal = ofdmWithCP(:, Ncp+1:end); % Remove cyclic prefix

% Apply FFT using Cooley-Tukey to recover the received subcarriers (back to frequency domain)
receivedSubcarriers = zeros(size(receivedSignal));
for i = 1:nSymbols
receivedSubcarriers(i, :) = fft(receivedSignal(i, :));
end

% 16-QAM Demodulation of the received subcarriers using custom function
receivedData = zeros(nSymbols, N);
for i = 1:nSymbols
receivedData(i, :) = qamdemod(receivedSubcarriers(i, :), M);
end

% Calculate symbol errors
numErrors = sum(data(:) ~= receivedData(:));
fprintf('Number of symbol errors: %d\n', numErrors);

%% Plot Received Subcarriers in Frequency Domain (after FFT at the receiver)
figure;
stem(0:N-1, abs(receivedSubcarriers(100, :))); % Plot absolute value of received subcarriers for the first symbol
title('Received Subcarriers in Frequency Domain for 1st OFDM Symbol (After FFT)');
xlabel('Subcarrier Index');
ylabel('Magnitude');

%% Plot Transmitted Data Constellation (Before IFFT)
figure;
scatterplot(modData(1, :)); % Plot for the first OFDM symbol
title('Transmitted 16-QAM Symbols for 1st OFDM Symbol');
xlabel('In-phase');
ylabel('Quadrature');

%% Plot Received Data Constellation (After Demodulation)
receivedModData = qammod(receivedData(1, :), M); % Map back for plotting
figure;
scatterplot(receivedModData);
title('Received 16-QAM Symbols for 1st OFDM Symbol');
xlabel('In-phase');
ylabel('Quadrature');

 Output

 
















Copy the MATLAB code above from here

 

Read more about

[1] OFDM in details

[2] Structure of an OFDM packet

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Calculation of SNR from FFT bins in MATLAB

๐Ÿ“˜ Overview ๐Ÿงฎ MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal ๐Ÿงฎ MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data ๐Ÿ“š Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (ฮฒ) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Gaussian minimum shift keying (GMSK)

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ Simulator for GMSK ๐Ÿงฎ MSK and GMSK: Understanding the Relationship ๐Ÿงฎ MATLAB Code for GMSK ๐Ÿ“š Simulation Results for GMSK ๐Ÿ“š Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: ฮธ(t) = ∫ 0 t m filtered (ฯ„) dฯ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t)...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

๐Ÿ“˜ Overview ๐Ÿงฎ How to use MATLAB Simulink ๐Ÿงฎ Simulation of ASK using MATLAB Simulink ๐Ÿงฎ Simulation of FSK using MATLAB Simulink ๐Ÿงฎ Simulation of PSK using MATLAB Simulink ๐Ÿงฎ Simulator for ASK, FSK, and PSK ๐Ÿงฎ Digital Signal Processing Simulator ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Constellation Diagrams of M-ary QAM | M-ary Modulation

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...