Skip to main content

Is Delta Modulation practically used for Typical Wireless Communication?

 

Delta modulation and demodulation [↗] processes are pretty simple. It uses a 1-bit quantizer, or there are 2^(1) = two quantization levels. In this encoding technique, we compare the succeeded sample with the previous sample. If it is greater than the previous sample, we assign 1. Otherwise, we assign 0. Here, we encode the modulated signal like this. However, this modulation scheme is susceptible to noise. So Delta modulation (DM) is not commonly used in typical wireless communication systems for several reasons:

Noise Sensitivity: 

Delta modulation is highly sensitive to noise due to its reliance on small changes (delta) in the input signal. In wireless communication systems, especially in environments with high levels of noise and interference, delta modulation may result in poor performance and low signal fidelity.

Quantization Errors: 

Delta modulation suffers from quantization errors, which occur when the difference between the input signal and the predicted value exceeds the step size (delta). These errors can accumulate over time, leading to distortion and degradation of the decoded signal quality.

Low Bit Efficiency: 

Delta modulation typically uses only one bit per sample to represent the signal, resulting in low bit efficiency compared to more sophisticated modulation schemes. This limitation makes delta modulation less suitable for applications requiring high data rates or efficient spectrum utilization.

Better Alternatives: 

In modern wireless communication systems, there are several alternative modulation schemes that offer better performance, robustness to noise, and higher data rates than delta modulation. Techniques such as amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and various digital modulation schemes (e.g., QPSK, QAM) are commonly used in wireless standards like Wi-Fi, Bluetooth, LTE, and 5G.

Adaptive Techniques: 

While adaptive delta modulation (ADM) can improve the performance of delta modulation by dynamically adjusting the step size based on the input signal characteristics, it still suffers from limitations related to noise sensitivity and quantization errors.

Overall, while delta modulation has certain advantages such as simplicity and low complexity, it is not commonly used in typical wireless communication systems due to its limitations in terms of noise sensitivity, quantization errors, and low bit efficiency. More advanced modulation schemes are preferred for achieving higher performance, robustness, and efficiency in wireless communication applications. 

MATLAB Code for BER vs SNR for Delta Modulation 

clear all;
close all;
clc;

% Parameters
N = 1000000; % Number of bits
SNR_dB = 0:1:20; % SNR in dB
SNR_lin = 10.^(SNR_dB./10); % Linear SNR
delta = 0.1; % Step size for delta modulation

% Generate random binary data
data = randi([0,1],N,1);

% Delta modulation
for k = 1:length(SNR_dB)
% Encode data using delta modulation
encoded_data = zeros(N,1);
for i = 1:N
if i == 1
encoded_data(i) = data(i); % First bit directly encoded
else
prediction = encoded_data(i-1) + delta*2*(randi([0,1])-0.5); % Predictor
if data(i) == 0 % If bit is 0, follow prediction
encoded_data(i) = prediction;
else % If bit is 1, add delta to the prediction
encoded_data(i) = prediction + delta;
end
end
end

% Add noise
noise_power = 1/SNR_lin(k);
noise = sqrt(noise_power) * randn(size(encoded_data));
received_data = encoded_data + noise;

% Decode received data
decoded_data = zeros(N,1);
for i = 1:N
if i == 1
decoded_data(i) = received_data(i); % First bit directly decoded
else
if received_data(i) >= encoded_data(i-1) % If received value is greater than previous, decode as 1
decoded_data(i) = 1;
else % Otherwise, decode as 0
decoded_data(i) = 0;
end
end
end

% Calculate BER
errors = sum(data ~= decoded_data);
BER(k) = errors/N;
end

% Plot BER vs SNR
figure;
semilogy(SNR_dB,BER,'b-o');
grid on;
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR in Delta Modulation');

Output


 
Fig: BER vs SNR in Delta Modulation (DM) where step-size = 0.1
 

Copy the MATLAB Code from here


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...