Skip to main content

Is Delta Modulation practically used for Typical Wireless Communication?

 

Delta modulation and demodulation [↗] processes are pretty simple. It uses a 1-bit quantizer, or there are 2^(1) = two quantization levels. In this encoding technique, we compare the succeeded sample with the previous sample. If it is greater than the previous sample, we assign 1. Otherwise, we assign 0. Here, we encode the modulated signal like this. However, this modulation scheme is susceptible to noise. So Delta modulation (DM) is not commonly used in typical wireless communication systems for several reasons:

Noise Sensitivity: 

Delta modulation is highly sensitive to noise due to its reliance on small changes (delta) in the input signal. In wireless communication systems, especially in environments with high levels of noise and interference, delta modulation may result in poor performance and low signal fidelity.

Quantization Errors: 

Delta modulation suffers from quantization errors, which occur when the difference between the input signal and the predicted value exceeds the step size (delta). These errors can accumulate over time, leading to distortion and degradation of the decoded signal quality.

Low Bit Efficiency: 

Delta modulation typically uses only one bit per sample to represent the signal, resulting in low bit efficiency compared to more sophisticated modulation schemes. This limitation makes delta modulation less suitable for applications requiring high data rates or efficient spectrum utilization.

Better Alternatives: 

In modern wireless communication systems, there are several alternative modulation schemes that offer better performance, robustness to noise, and higher data rates than delta modulation. Techniques such as amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and various digital modulation schemes (e.g., QPSK, QAM) are commonly used in wireless standards like Wi-Fi, Bluetooth, LTE, and 5G.

Adaptive Techniques: 

While adaptive delta modulation (ADM) can improve the performance of delta modulation by dynamically adjusting the step size based on the input signal characteristics, it still suffers from limitations related to noise sensitivity and quantization errors.

Overall, while delta modulation has certain advantages such as simplicity and low complexity, it is not commonly used in typical wireless communication systems due to its limitations in terms of noise sensitivity, quantization errors, and low bit efficiency. More advanced modulation schemes are preferred for achieving higher performance, robustness, and efficiency in wireless communication applications. 

MATLAB Code for BER vs SNR for Delta Modulation 

clear all;
close all;
clc;

% Parameters
N = 1000000; % Number of bits
SNR_dB = 0:1:20; % SNR in dB
SNR_lin = 10.^(SNR_dB./10); % Linear SNR
delta = 0.1; % Step size for delta modulation

% Generate random binary data
data = randi([0,1],N,1);

% Delta modulation
for k = 1:length(SNR_dB)
% Encode data using delta modulation
encoded_data = zeros(N,1);
for i = 1:N
if i == 1
encoded_data(i) = data(i); % First bit directly encoded
else
prediction = encoded_data(i-1) + delta*2*(randi([0,1])-0.5); % Predictor
if data(i) == 0 % If bit is 0, follow prediction
encoded_data(i) = prediction;
else % If bit is 1, add delta to the prediction
encoded_data(i) = prediction + delta;
end
end
end

% Add noise
noise_power = 1/SNR_lin(k);
noise = sqrt(noise_power) * randn(size(encoded_data));
received_data = encoded_data + noise;

% Decode received data
decoded_data = zeros(N,1);
for i = 1:N
if i == 1
decoded_data(i) = received_data(i); % First bit directly decoded
else
if received_data(i) >= encoded_data(i-1) % If received value is greater than previous, decode as 1
decoded_data(i) = 1;
else % Otherwise, decode as 0
decoded_data(i) = 0;
end
end
end

% Calculate BER
errors = sum(data ~= decoded_data);
BER(k) = errors/N;
end

% Plot BER vs SNR
figure;
semilogy(SNR_dB,BER,'b-o');
grid on;
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR in Delta Modulation');

Output


 
Fig: BER vs SNR in Delta Modulation (DM) where step-size = 0.1
 

Copy the MATLAB Code from here


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK s...

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection

Frequency Bands Ultra-Wideband... UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi). Key Features of UWB Bands UWB in order to bring decimeter-level positioning to the market There is almost no interference with other radio communication systems Multipath signal propagation resistance  resistance to noise  Low-power transceiver required Ultra Wide Band or UWB comes under the  Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz. UWB frequency range: 3.1 GHz to 10.6 GHz Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field co...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since i...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...