Skip to main content

Is Delta Modulation practically used for Typical Wireless Communication?

 

Delta modulation and demodulation [↗] processes are pretty simple. It uses a 1-bit quantizer, or there are 2^(1) = two quantization levels. In this encoding technique, we compare the succeeded sample with the previous sample. If it is greater than the previous sample, we assign 1. Otherwise, we assign 0. Here, we encode the modulated signal like this. However, this modulation scheme is susceptible to noise. So Delta modulation (DM) is not commonly used in typical wireless communication systems for several reasons:

Noise Sensitivity: 

Delta modulation is highly sensitive to noise due to its reliance on small changes (delta) in the input signal. In wireless communication systems, especially in environments with high levels of noise and interference, delta modulation may result in poor performance and low signal fidelity.

Quantization Errors: 

Delta modulation suffers from quantization errors, which occur when the difference between the input signal and the predicted value exceeds the step size (delta). These errors can accumulate over time, leading to distortion and degradation of the decoded signal quality.

Low Bit Efficiency: 

Delta modulation typically uses only one bit per sample to represent the signal, resulting in low bit efficiency compared to more sophisticated modulation schemes. This limitation makes delta modulation less suitable for applications requiring high data rates or efficient spectrum utilization.

Better Alternatives: 

In modern wireless communication systems, there are several alternative modulation schemes that offer better performance, robustness to noise, and higher data rates than delta modulation. Techniques such as amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and various digital modulation schemes (e.g., QPSK, QAM) are commonly used in wireless standards like Wi-Fi, Bluetooth, LTE, and 5G.

Adaptive Techniques: 

While adaptive delta modulation (ADM) can improve the performance of delta modulation by dynamically adjusting the step size based on the input signal characteristics, it still suffers from limitations related to noise sensitivity and quantization errors.

Overall, while delta modulation has certain advantages such as simplicity and low complexity, it is not commonly used in typical wireless communication systems due to its limitations in terms of noise sensitivity, quantization errors, and low bit efficiency. More advanced modulation schemes are preferred for achieving higher performance, robustness, and efficiency in wireless communication applications. 

MATLAB Code for BER vs SNR for Delta Modulation 

clear all;
close all;
clc;

% Parameters
N = 1000000; % Number of bits
SNR_dB = 0:1:20; % SNR in dB
SNR_lin = 10.^(SNR_dB./10); % Linear SNR
delta = 0.1; % Step size for delta modulation

% Generate random binary data
data = randi([0,1],N,1);

% Delta modulation
for k = 1:length(SNR_dB)
% Encode data using delta modulation
encoded_data = zeros(N,1);
for i = 1:N
if i == 1
encoded_data(i) = data(i); % First bit directly encoded
else
prediction = encoded_data(i-1) + delta*2*(randi([0,1])-0.5); % Predictor
if data(i) == 0 % If bit is 0, follow prediction
encoded_data(i) = prediction;
else % If bit is 1, add delta to the prediction
encoded_data(i) = prediction + delta;
end
end
end

% Add noise
noise_power = 1/SNR_lin(k);
noise = sqrt(noise_power) * randn(size(encoded_data));
received_data = encoded_data + noise;

% Decode received data
decoded_data = zeros(N,1);
for i = 1:N
if i == 1
decoded_data(i) = received_data(i); % First bit directly decoded
else
if received_data(i) >= encoded_data(i-1) % If received value is greater than previous, decode as 1
decoded_data(i) = 1;
else % Otherwise, decode as 0
decoded_data(i) = 0;
end
end
end

% Calculate BER
errors = sum(data ~= decoded_data);
BER(k) = errors/N;
end

% Plot BER vs SNR
figure;
semilogy(SNR_dB,BER,'b-o');
grid on;
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR in Delta Modulation');

Output


 
Fig: BER vs SNR in Delta Modulation (DM) where step-size = 0.1
 

Copy the MATLAB Code from here


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

What are the main lobe and side lobes in Beamforming

    What are the main lobe and side lobes in Beamforming? You've probably noticed that in the diagram of  beamforming , there are two types of lobes in beamforming patterns. One is the main lobe, while the others are side lobes. We intend to communicate with receivers with a stronger directional path from the transmitter when we produce beams for wireless communication. We can also see side lobes in this scenario. These side lobes, on the other hand, are not necessary for effective communication. As a result, we take various procedures to remove those side lobes or to reduce the number of side lobes as much as feasible; otherwise, inter-symbol interference  occurs, and signal quality suffers. Figure: Illustration of Main Lobe and Side lobes, where the x-axis denotes the angle of arrival (AOA) and angle of departure (AOD), respectively, while, the y-axis denotes the gain/power in dB (decibel).     In the case of MIMO antennas, our major goal is to reduce int...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation 📘 Overview & Theory of Pulse Amplitude Modulation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital Data 🧮 Other Pulse Modulation Techniques (PWM, PPM, DM, PCM) Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm = 10; % frequency of the message signal fc = 100; % frequency of the carrier signal fs = 100...