Skip to main content

Alamouti's Scheme for MIMO Communication

 

 The Alamouti scheme is a simple and effective space-time block coding (STBC) technique used in wireless communications to achieve diversity gain. It's designed for systems with two transmit antennas and one or more receive antennas, providing transmit diversity.

Alamouti's Space-Time Block Coding (STBC) is a technique used in MIMO wireless communication systems to achieve diversity gain without requiring channel knowledge at the transmitter.

Alamouti 2 X 1 Matrix Equation Representation

y
=
h11
h21
X
s1 -s2*
s2 s1*
+
n
It involves transmitting multiple copies of the same symbols over multiple antennas with specific phase relationships. This allows the receiver to combine the signals effectively and recover the transmitted symbols even in the presence of fading.

The Alamouti precoding matrix is constructed based on the Alamouti code, which defines the phase relationships between the symbols transmitted from different antennas over two consecutive time slots. For a 2x1 MIMO system (two transmit antennas and one receive antenna), the Alamouti precoding matrix is as follows:

Precoding Matrix=[s1  −s2∗;  s2   s1∗]

Where:

    s1 and s2 are the symbols to be transmitted from the two antennas in the current time slot.
    s1∗​ and s2∗​ are the complex conjugates of s1​ and s2​ respectively.

This matrix ensures that the symbols transmitted from the two antennas in the current time slot have the necessary phase relationships to achieve diversity gain at the receiver.

Here's how the Alamouti precoding matrix works:

    In the first time slot, symbols s1​ and s2​ are transmitted from the two antennas without any phase manipulation.
    In the second time slot, symbols −s2∗​ and s1∗​ are transmitted from the two antennas. The negative sign and complex conjugate ensure the correct phase relationship required for diversity gain at the receiver.
    At the receiver, combining the signals from the two time slots using Alamouti decoding allows for effective recovery of the transmitted symbols, even in the presence of fading.

By using Alamouti's STBC and the corresponding precoding matrix, the MIMO system can achieve diversity gain and improve performance without requiring explicit channel knowledge at the transmitter. 

 

Orthogonality Property 

Alamouti's Space-Time Block Coding (STBC) scheme ensures that symbols transmitted from different antennas in successive time slots are orthogonal to each other. This orthogonality property is essential for enabling simple decoding at the receiver and achieving diversity gain without requiring channel knowledge at the transmitter.



Now, let's calculate the inner product (dot product) between two encoded symbols transmitted from different antennas in successive time slots.

Let x1x1​ and x2x2​ be the encoded symbols transmitted from the two antennas in the first and second time slots respectively.

x1=[s1 ; s2]
x2=[−s2∗​ ; s1∗​​]

The inner product x1' * x2​ is given by:

x1' * x2​ = [s1 ; ​​s2​​] * [−s2∗​ ; s1∗​​]
=−∣s2∣^2 + ∣s1∣^2


Since the symbols s1​ and s2​ are independent and identically distributed (IID) random variables with equal power, their magnitudes are equal, i.e., ∣s1∣=∣s2∣. Therefore, the inner product x1' * x2​ simplifies to:

x1' * x2 = −∣s2∣^2 + ∣s1∣^2 = 0x1T​x2​= −∣s1∣^2 + ∣s1∣^2 = 0

This shows that the inner product between the encoded symbols transmitted from different antennas in successive time slots is zero, indicating orthogonality.

This orthogonality property allows the receiver to effectively decode the transmitted symbols by taking advantage of the diversity provided by the multiple antennas without interference between symbols transmitted from different antennas.

 

 
 
Fig 1:  BER vs SNR for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

(Get MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB)

Also Read about

[1] Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

[2] Theoretical BER vs SNR for Alamouti's Scheme  

[3] MATLAB Code for Multi-User STBC (using Alamouti's Scheme) 

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ï€)) ∫â‚“∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...