Skip to main content

Alamouti's Scheme for MIMO Communication

 

 The Alamouti scheme is a simple and effective space-time block coding (STBC) technique used in wireless communications to achieve diversity gain. It's designed for systems with two transmit antennas and one or more receive antennas, providing transmit diversity.

Alamouti's Space-Time Block Coding (STBC) is a technique used in MIMO wireless communication systems to achieve diversity gain without requiring channel knowledge at the transmitter.

Alamouti 2 X 1 Matrix Equation Representation

y
=
h11
h21
X
s1 -s2*
s2 s1*
+
n
It involves transmitting multiple copies of the same symbols over multiple antennas with specific phase relationships. This allows the receiver to combine the signals effectively and recover the transmitted symbols even in the presence of fading.

The Alamouti precoding matrix is constructed based on the Alamouti code, which defines the phase relationships between the symbols transmitted from different antennas over two consecutive time slots. For a 2x1 MIMO system (two transmit antennas and one receive antenna), the Alamouti precoding matrix is as follows:

Precoding Matrix=[s1  −s2∗;  s2   s1∗]

Where:

    s1 and s2 are the symbols to be transmitted from the two antennas in the current time slot.
    s1∗​ and s2∗​ are the complex conjugates of s1​ and s2​ respectively.

This matrix ensures that the symbols transmitted from the two antennas in the current time slot have the necessary phase relationships to achieve diversity gain at the receiver.

Here's how the Alamouti precoding matrix works:

    In the first time slot, symbols s1​ and s2​ are transmitted from the two antennas without any phase manipulation.
    In the second time slot, symbols −s2∗​ and s1∗​ are transmitted from the two antennas. The negative sign and complex conjugate ensure the correct phase relationship required for diversity gain at the receiver.
    At the receiver, combining the signals from the two time slots using Alamouti decoding allows for effective recovery of the transmitted symbols, even in the presence of fading.

By using Alamouti's STBC and the corresponding precoding matrix, the MIMO system can achieve diversity gain and improve performance without requiring explicit channel knowledge at the transmitter. 

 

Orthogonality Property 

Alamouti's Space-Time Block Coding (STBC) scheme ensures that symbols transmitted from different antennas in successive time slots are orthogonal to each other. This orthogonality property is essential for enabling simple decoding at the receiver and achieving diversity gain without requiring channel knowledge at the transmitter.



Now, let's calculate the inner product (dot product) between two encoded symbols transmitted from different antennas in successive time slots.

Let x1x1​ and x2x2​ be the encoded symbols transmitted from the two antennas in the first and second time slots respectively.

x1=[s1 ; s2]
x2=[−s2∗​ ; s1∗​​]

The inner product x1' * x2​ is given by:

x1' * x2​ = [s1 ; ​​s2​​] * [−s2∗​ ; s1∗​​]
=−∣s2∣^2 + ∣s1∣^2


Since the symbols s1​ and s2​ are independent and identically distributed (IID) random variables with equal power, their magnitudes are equal, i.e., ∣s1∣=∣s2∣. Therefore, the inner product x1' * x2​ simplifies to:

x1' * x2 = −∣s2∣^2 + ∣s1∣^2 = 0x1T​x2​= −∣s1∣^2 + ∣s1∣^2 = 0

This shows that the inner product between the encoded symbols transmitted from different antennas in successive time slots is zero, indicating orthogonality.

This orthogonality property allows the receiver to effectively decode the transmitted symbols by taking advantage of the diversity provided by the multiple antennas without interference between symbols transmitted from different antennas.

 

 
 
Fig 1:  BER vs SNR for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

(Get MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB)

Also Read about

[1] Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

[2] Theoretical BER vs SNR for Alamouti's Scheme  

[3] MATLAB Code for Multi-User STBC (using Alamouti's Scheme) 

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...