Skip to main content

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation


 

MATLAB Code for Analog Pulse Width Modulation (PWM)

clc;
clear all;
close all;
fs=30; %frequency of the sawtooth signal
fm=3; %frequency of the message signal
sampling_frequency = 10e3;
a=0.5; % amplitide

t=0:(1/sampling_frequency):1; %sampling rate of 10kHz


sawtooth=2*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave


subplot(4,1,1);
plot(t,sawtooth); % plotting the sawtooth wave
title('Comparator Wave');

msg=a.*sin(2*pi*fm*t); %generating message wave

subplot(4,1,2);
plot(t,msg); %plotting the sine message wave
title('Message Signal');


for i=1:length(sawtooth)
if (msg(i)>=sawtooth(i))
pwm(i)=1; %is message signal amplitude at i th sample is greater than
%sawtooth wave amplitude at i th sample
else
pwm(i)=0;
end
end

subplot(4,1,3);
plot(t,pwm,'r');
title('PWM');
axis([0 1 0 1.1]); %to keep the pwm visible during plotting.

%% Demodulation
% Demodulation: Measure the pulse width to reconstruct the signal
demodulated_signal = zeros(size(msg));

for i = 1:length(pwm)-1
if pwm(i) == 1
% Measure the time until the next falling edge
j = i + 1;
while pwm(j) == 1 && j < length(pwm)
j = j + 1;
end
% Reconstruct the analog value based on pulse width
demodulated_signal(i) = mean(msg(i:j-1));
end
end

% Low-Pass Filter Design
Fs = 1 / (t(2) - t(1)); % Sampling frequency
Fc = 5; % Cutoff frequency (adjust based on your signal)
[b, a] = butter(4, Fc / (Fs / 2), 'low'); % 4th-order Butterworth filter

% Apply the Low-Pass Filter
filtered_signal = filtfilt(b, a, demodulated_signal);

% Plot the demodulated and filtered signal for comparison
subplot(4,1,4);
plot(t, filtered_signal, 'r', 'LineWidth', 1.5); % Filtered signal in red
title('Demodulated Signal (Filtered)');
xlabel('Time');
ylabel('Amplitude');
grid on;
 

Output 



 MATLAB Code for Digital Pulse Width Modulation (PWM)


% This code is developed by SalimWireless.Com
clc; clear; close all;
% Digital SPWM Generator using Square Wave Carrier in MATLAB

% === PARAMETERS ===
fs_carrier = 20;       % Carrier frequency in Hz
f_signal = 5;           % Message signal frequency in Hz
sampleRate = 50000;      % Samples per second
duration = 1;            % Duration in seconds

% === TIME VECTOR ===
t = linspace(0, duration, sampleRate * duration);

% === MESSAGE SIGNAL (SINE WAVE) ===
signal = sin(2 * pi * f_signal * t);

% === NORMALIZE SIGNAL TO 0–1 FOR DUTY CYCLE ===
normalizedSignal = (signal + 1) / 2;  % Scale from [-1, 1] to [0, 1]

% === PWM GENERATION BASED ON SQUARE CARRIER PERIODS ===
samplesPerCarrierPeriod = floor(sampleRate / fs_carrier);
pwm = zeros(1, length(t));

% Generate PWM: For each carrier cycle, set ON time based on message amplitude at start
for i = 1:samplesPerCarrierPeriod:length(t)
    startIndex = i;
    if startIndex > length(t)
        break;
    end
    
    % Duty cycle at start of period
    duty = normalizedSignal(startIndex);
    onSamples = floor(samplesPerCarrierPeriod * duty);
    
    % Set PWM high for onSamples
    endIndex = min(startIndex + samplesPerCarrierPeriod - 1, length(t));
    onEndIndex = min(startIndex + onSamples - 1, endIndex);
    
    pwm(startIndex:onEndIndex) = 1;
end

% === GENERATE SQUARE CARRIER FOR REFERENCE PLOTTING ===
carrierSquare = double(mod(t * fs_carrier, 1) < 0.5);

% === TRIM TO FIRST 3 CYCLES OF MESSAGE SIGNAL FOR VISUALIZATION ===
samplesToPlot = floor(3 * (sampleRate / f_signal));
t_plot = t(1:samplesToPlot);
signal_plot = signal(1:samplesToPlot);
carrier_plot = carrierSquare(1:samplesToPlot);
pwm_plot = pwm(1:samplesToPlot);

% === PLOTTING ===
figure('Name', 'PWM with Square Wave Carrier', 'Color', 'w');
hold on;
plot(t_plot, signal_plot, 'b', 'LineWidth', 1.2);
plot(t_plot, carrier_plot, 'g--', 'LineWidth', 1);
stairs(t_plot, pwm_plot, 'r', 'LineWidth', 1.2);
hold off;

xlabel('Time (s)');
ylabel('Amplitude');
title('PWM Output with Square Wave Carrier');
legend('Message Signal (Sine)', 'Square Carrier', 'PWM Output', 'Location', 'southoutside', 'Orientation', 'horizontal');
grid on;
web('https://www.salimwireless.com/search?q=pwm%20pulse%20modulation', '-browser');

Output

 

PWM Signal Generation

 

 
 
 

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

๐Ÿงฎ Coherence Bandwidth ๐Ÿงฎ Coherence Time ๐Ÿงฎ MATLAB Code s ๐Ÿ“š Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Pulse Position Modulation (PPM)

Pulse Position Modulation (PPM) is a type of signal modulation in which M message bits are encoded by transmitting a single pulse within one of 2แดน possible time positions within a fixed time frame. This process is repeated every T seconds , resulting in a data rate of M/T bits per second . PPM is a form of analog modulation where the position of each pulse is varied according to the amplitude of the sampled modulating signal , while the amplitude and width of the pulses remain constant . This means only the timing (position) of the pulse carries the information. PPM is commonly used in optical and wireless communications , especially where multipath interference is minimal or needs to be reduced. Because the information is carried in timing , it's more robust in some noisy environments compared to other modulation schemes. Although PPM can be used for analog signal modulation , it is also used in digital communications where each pulse position represents a symbol or bit...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Bartlett Method in MATLAB

Steps to calculate Spectral power density using Bartlett Method 'M' is the length of each segment for the Bartlett method, set to 100 samples. 'K' is the number of segments obtained by dividing the total number of samples N by the segment length 'M'. psd_bartlett_broadband is initialized to store the accumulated periodogram. For each segment k, x_k extracts the k-th segment of the broadband signal. P_k computes the periodogram of the k-th segment using the FFT. The periodograms are accumulated and averaged over all segments. The PSD is plotted in dB/Hz by converting the power values to decibels using 10 * log10.   MATLAB Script clc; clear; close all; % Parameters fs = 1000; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector N = length(t); % Number of samples % Generate synthetic broadband ARMA process arma_order = [2, 2]; % ARMA(p,q) order a = [1, -0.75, 0....