Skip to main content

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

 

Pulse Amplitude Modulation (PAM) & Demodulation

MATLAB Script

clc;

clear all;

close all;

fm= 10; % frequency of the message signal

fc= 100; % frequency of the carrier signal

fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor)

t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz)

m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal)

c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc

s=m.*c; % modulated signal (multiplication of element by element)

subplot(4,1,1);

plot(t,m);

title('Message signal');

xlabel ('Time');

ylabel('Amplitude');

subplot(4,1,2);

plot(t,c);

title('Carrier signal');

xlabel('Time');

ylabel('Amplitude');

subplot(4,1,3);

plot(t,s);

title('Modulated signal');

xlabel('Time');

ylabel('Amplitude');

%demdulated

d=s.*c; % At receiver, received signal is multiplied by carrier signal

filter=fir1(200,fm/fs,'low'); % low-pass FIR filter which order is 200

% here fm is the cut-off frequency and the fs is the sampling frequency

original_t_signal=conv(filter,d); % convolution of demodulated signal with filter %coefficient

t1=0:1/(length(original_t_signal)-1):1;

subplot(4,1,4);

plot(t1,original_t_signal);

title('demodulated signal');

xlabel('time');

ylabel('amplitude');

 

 Output

 

Copy the code from here

 


Another Code for Pulse Amplitude Modulation

MATLAB Script

 clc;
clear;
close all;

% Parameters
messageFrequency = 2;   % Message frequency in Hz
carrierFrequency = 20;  % Carrier frequency in Hz
samplingFrequency = 1000; % Sampling frequency in Hz
duration = 1;           % Signal duration in seconds
A = 1;                  % Amplitude of the signals

% Time vector
t = 0:1/samplingFrequency:duration;

% Message signal (sinusoidal)
messageSignal = A * sin(2 * pi * messageFrequency * t);

% Carrier signal (square wave)
carrierSignal = A * square(2 * pi * carrierFrequency * t);

% PAM signal
pamSignal = messageSignal .* (carrierSignal > 0);

% Plotting
figure;
subplot(3,1,1);
plot(t, messageSignal);
title('Message Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,2);
plot(t, carrierSignal);
title('Carrier Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,3);
plot(t, pamSignal);
title('PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');

Copy the Code from here

 

Pulse Amplitude Modulation (PAM) & Demodulation for Digital Data

% The code is written by SalimWireless.Com
clc;
clear;
close all;


% PAM Modulation and Demodulation Example


% Parameters
M = 8; % PAM order (8-PAM)
numSymbols = 100; % Number of symbols to transmit
Fs = 1000; % Sampling frequency
T = 1; % Symbol duration


% Generate random data
data = randi([0 M-1], 1, numSymbols); % Random data symbols


% PAM Modulation
% Map the data symbols to PAM levels
pamLevels = linspace(-M + 1, M - 1, M); % PAM levels
modulatedSignal = pamLevels(data + 1); % Map data to PAM levels


% Create a time vector
t = 0:1/Fs:T*numSymbols-1/Fs;


% Upsample and create PAM signal
upsampledSignal = zeros(1, length(t));
for i = 1:numSymbols
upsampledSignal((i-1)*Fs+1:i*Fs) = modulatedSignal(i);
end


% Add some noise
snr = 20; % Signal-to-noise ratio
noisySignal = awgn(upsampledSignal, snr, 'measured');


% PAM Demodulation
% Sample the noisy signal at symbol rate
receivedSymbols = noisySignal(1:Fs:end);


% Map received symbols to nearest PAM level
demodulatedData = zeros(1, numSymbols);
for i = 1:numSymbols
[~, demodulatedData(i)] = min(abs(receivedSymbols(i) - pamLevels));
end


% Plotting
figure;
subplot(4,1,1);
stem(data);
title('Original Data');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, upsampledSignal);
title('Transmitted PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, noisySignal);
title('Received Noisy PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
stem(demodulatedData);
title('Demodulated Data');
xlabel('Symbol Index');
ylabel('PAM Level');
grid on;


% Display results
disp('Original Data:');
disp(data);
disp('Demodulated Data:');
disp(demodulatedData);

Output






Copy the MATLAB Code from here



Also read about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Gaussian minimum shift keying (GMSK)

Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t) = cos(2Ï€f c t + θ(t)) Here, f c is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave. Quadrature Modulation (Optional) ...