Skip to main content

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation


Pulse Amplitude Modulation (PAM) & Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal

MATLAB Script

clc;
clear all;
close all;
fm = 10; % frequency of the message signal
fc = 100; % frequency of the carrier signal
fs = 1000 * fm; % sampling frequency (100 kHz)
t = 0:1/fs:1;
m = 1 * cos(2 * pi * fm * t);
c = 0.5 * square(2 * pi * fc * t) + 0.5;
s = m .* c;

subplot(4,1,1);
plot(t,m);
title('Message signal');
xlabel('Time');
ylabel('Amplitude');

subplot(4,1,2);
plot(t,c);
title('Carrier signal');
xlabel('Time');
ylabel('Amplitude');

subplot(4,1,3);
plot(t,s);
title('Modulated signal');
xlabel('Time');
ylabel('Amplitude');

% Demodulation
d = s .* c;
filter = fir1(200,fm/fs,'low');
original_t_signal = conv(filter,d);
t1 = 0:1/(length(original_t_signal)-1):1;

subplot(4,1,4);
plot(t1,original_t_signal);
title('Demodulated signal');
xlabel('Time');
ylabel('Amplitude');

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Output

PAM analog modulation MATLAB output

Another Code for Pulse Amplitude Modulation and Demodulation of an Analog Message Signal

MATLAB Script

clc;
clear;
close all;

% Parameters
messageFrequency = 2;
carrierFrequency = 20;
samplingFrequency = 1000;
duration = 1;
A = 1;

% Time vector
t = 0:1/samplingFrequency:duration;

% Message signal
messageSignal = A * sin(2 * pi * messageFrequency * t);

% Carrier signal
carrierSignal = A * square(2 * pi * carrierFrequency * t);

% PAM signal
pamSignal = messageSignal .* (carrierSignal > 0);

% Plotting
figure;
subplot(3,1,1); plot(t, messageSignal); title('Message Signal');
subplot(3,1,2); plot(t, carrierSignal); title('Carrier Signal');
subplot(3,1,3); plot(t, pamSignal); title('PAM Signal');

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Pulse Amplitude Modulation (PAM) & Demodulation for Digital Data

% The code is written by SalimWireless.Com
clc;
clear;
close all;

% Parameters
M = 8;
numSymbols = 100;
Fs = 1000;
T = 1;

% Generate random data
data = randi([0 M-1], 1, numSymbols);

% PAM Modulation
pamLevels = linspace(-M + 1, M - 1, M);
modulatedSignal = pamLevels(data + 1);

% Create time vector
t = 0:1/Fs:T*numSymbols-1/Fs;

% Upsample and create PAM signal
upsampledSignal = zeros(1, length(t));
for i = 1:numSymbols
    upsampledSignal((i-1)*Fs+1:i*Fs) = modulatedSignal(i);
end

% Add noise
snr = 20;
noisySignal = awgn(upsampledSignal, snr, 'measured');

% PAM Demodulation
receivedSymbols = noisySignal(1:Fs:end);
demodulatedData = zeros(1, numSymbols);
for i = 1:numSymbols
    [~, demodulatedData(i)] = min(abs(receivedSymbols(i) - pamLevels));
end

% Plotting
figure;
subplot(4,1,1); stem(data); title('Original Data');
subplot(4,1,2); plot(t, upsampledSignal); title('Transmitted PAM Signal');
subplot(4,1,3); plot(t, noisySignal); title('Received Noisy PAM Signal');
subplot(4,1,4); stem(demodulatedData); title('Demodulated Data');
grid on;

disp('Original Data:'); disp(data);
disp('Demodulated Data:'); disp(demodulatedData);

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Output

PAM digital modulation MATLAB output

Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM

Message Signal Simulation
PWM Signal Simulation
PPM Signal Simulation
PCM Signal Simulation

Further Reading

  1. Pulse Amplitude Modulation and Demodulation theory
  2. Is PAM a Digital Modulation Technique ?
  3. Pulse Width Modulation (PWM) and Demodulation
  4. Pulse Position Modulation (PPM) and Demodulation
  5. Delta Modulation and demodulation
  6. Pulse Code Modulation (PCM)
  7. Quantization Signal to Noise Ration (Q-SNR)
  8. MATLAB Code for Pulse Width Modulation and Demodulation
  9. MATLAB Code for Pulse Position Modulation (PPM) and Demodulation
  10. MATLAB Code for Pulse Code Modulation (PCM) and demodulation

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical BER vs SNR for m-ary PSK and QAM

Relationship Between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) The relationship between Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) is a fundamental concept in digital communication systems. Here’s a detailed explanation: BER (Bit Error Rate): The ratio of the number of bits incorrectly received to the total number of bits transmitted. It measures the quality of the communication link. SNR (Signal-to-Noise Ratio): The ratio of the signal power to the noise power, indicating how much the signal is corrupted by noise. Relationship The BER typically decreases as the SNR increases. This relationship helps evaluate the performance of various modulation schemes. BPSK (Binary Phase Shift Keying) Simple and robust. BER in AWGN channel: BER = 0.5 × erfc(√SNR) Performs well at low SNR. QPSK (Quadrature...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...