Skip to main content

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation


Pulse Amplitude Modulation (PAM) & Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal

MATLAB Script

clc;
clear all;
close all;
fm = 10; % frequency of the message signal
fc = 100; % frequency of the carrier signal
fs = 1000 * fm; % sampling frequency (100 kHz)
t = 0:1/fs:1;
m = 1 * cos(2 * pi * fm * t);
c = 0.5 * square(2 * pi * fc * t) + 0.5;
s = m .* c;

subplot(4,1,1);
plot(t,m);
title('Message signal');
xlabel('Time');
ylabel('Amplitude');

subplot(4,1,2);
plot(t,c);
title('Carrier signal');
xlabel('Time');
ylabel('Amplitude');

subplot(4,1,3);
plot(t,s);
title('Modulated signal');
xlabel('Time');
ylabel('Amplitude');

% Demodulation
d = s .* c;
filter = fir1(200,fm/fs,'low');
original_t_signal = conv(filter,d);
t1 = 0:1/(length(original_t_signal)-1):1;

subplot(4,1,4);
plot(t1,original_t_signal);
title('Demodulated signal');
xlabel('Time');
ylabel('Amplitude');

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Output

PAM analog modulation MATLAB output

Another Code for Pulse Amplitude Modulation and Demodulation of an Analog Message Signal

MATLAB Script

clc;
clear;
close all;

% Parameters
messageFrequency = 2;
carrierFrequency = 20;
samplingFrequency = 1000;
duration = 1;
A = 1;

% Time vector
t = 0:1/samplingFrequency:duration;

% Message signal
messageSignal = A * sin(2 * pi * messageFrequency * t);

% Carrier signal
carrierSignal = A * square(2 * pi * carrierFrequency * t);

% PAM signal
pamSignal = messageSignal .* (carrierSignal > 0);

% Plotting
figure;
subplot(3,1,1); plot(t, messageSignal); title('Message Signal');
subplot(3,1,2); plot(t, carrierSignal); title('Carrier Signal');
subplot(3,1,3); plot(t, pamSignal); title('PAM Signal');

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Pulse Amplitude Modulation (PAM) & Demodulation for Digital Data

% The code is written by SalimWireless.Com
clc;
clear;
close all;

% Parameters
M = 8;
numSymbols = 100;
Fs = 1000;
T = 1;

% Generate random data
data = randi([0 M-1], 1, numSymbols);

% PAM Modulation
pamLevels = linspace(-M + 1, M - 1, M);
modulatedSignal = pamLevels(data + 1);

% Create time vector
t = 0:1/Fs:T*numSymbols-1/Fs;

% Upsample and create PAM signal
upsampledSignal = zeros(1, length(t));
for i = 1:numSymbols
    upsampledSignal((i-1)*Fs+1:i*Fs) = modulatedSignal(i);
end

% Add noise
snr = 20;
noisySignal = awgn(upsampledSignal, snr, 'measured');

% PAM Demodulation
receivedSymbols = noisySignal(1:Fs:end);
demodulatedData = zeros(1, numSymbols);
for i = 1:numSymbols
    [~, demodulatedData(i)] = min(abs(receivedSymbols(i) - pamLevels));
end

% Plotting
figure;
subplot(4,1,1); stem(data); title('Original Data');
subplot(4,1,2); plot(t, upsampledSignal); title('Transmitted PAM Signal');
subplot(4,1,3); plot(t, noisySignal); title('Received Noisy PAM Signal');
subplot(4,1,4); stem(demodulatedData); title('Demodulated Data');
grid on;

disp('Original Data:'); disp(data);
disp('Demodulated Data:'); disp(demodulatedData);

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Output

PAM digital modulation MATLAB output

Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM

Message Signal Simulation
PWM Signal Simulation
PPM Signal Simulation
PCM Signal Simulation

Further Reading

  1. Pulse Amplitude Modulation and Demodulation theory
  2. Is PAM a Digital Modulation Technique ?
  3. Pulse Width Modulation (PWM) and Demodulation
  4. Pulse Position Modulation (PPM) and Demodulation
  5. Delta Modulation and demodulation
  6. Pulse Code Modulation (PCM)
  7. Quantization Signal to Noise Ration (Q-SNR)
  8. MATLAB Code for Pulse Width Modulation and Demodulation
  9. MATLAB Code for Pulse Position Modulation (PPM) and Demodulation
  10. MATLAB Code for Pulse Code Modulation (PCM) and demodulation

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Periodogram in MATLAB

Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 Here: k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² Where: S_x(f_k) represents the power of the signal at frequency f_k . The factor 1/N normalizes the power by the signal length. Step 4: Convert to Decibels (Optional) For visualization, convert PSD to decibels (dB): S_x dB (f_k) = 10 lo...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...