Skip to main content

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation


 

Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal

MATLAB Script

clc;

clear all;

close all;

fm= 10; % frequency of the message signal

fc= 100; % frequency of the carrier signal

fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor)

t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz)

m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal)

c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc

s=m.*c; % modulated signal (multiplication of element by element)

subplot(4,1,1);

plot(t,m);

title('Message signal');

xlabel ('Time');

ylabel('Amplitude');

subplot(4,1,2);

plot(t,c);

title('Carrier signal');

xlabel('Time');

ylabel('Amplitude');

subplot(4,1,3);

plot(t,s);

title('Modulated signal');

xlabel('Time');

ylabel('Amplitude');

%demdulated

d=s.*c; % At receiver, received signal is multiplied by carrier signal

filter=fir1(200,fm/fs,'low'); % low-pass FIR filter which order is 200

% here fm is the cut-off frequency and the fs is the sampling frequency

original_t_signal=conv(filter,d); % convolution of demodulated signal with filter %coefficient

t1=0:1/(length(original_t_signal)-1):1;

subplot(4,1,4);

plot(t1,original_t_signal);

title('demodulated signal');

xlabel('time');

ylabel('amplitude');

web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

 Output

 

Copy the code from here

 


Another Code for Pulse Amplitude Modulation and Demodulation of an Analog Message Signal 

MATLAB Script

 clc;
clear;
close all;

% Parameters
messageFrequency = 2;   % Message frequency in Hz
carrierFrequency = 20;  % Carrier frequency in Hz
samplingFrequency = 1000; % Sampling frequency in Hz
duration = 1;           % Signal duration in seconds
A = 1;                  % Amplitude of the signals

% Time vector
t = 0:1/samplingFrequency:duration;

% Message signal (sinusoidal)
messageSignal = A * sin(2 * pi * messageFrequency * t);

% Carrier signal (square wave)
carrierSignal = A * square(2 * pi * carrierFrequency * t);

% PAM signal
pamSignal = messageSignal .* (carrierSignal > 0);

% Plotting
figure;
subplot(3,1,1);
plot(t, messageSignal);
title('Message Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,2);
plot(t, carrierSignal);
title('Carrier Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,3);
plot(t, pamSignal);
title('PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');
web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Copy the Code from here

 

Pulse Amplitude Modulation (PAM) & Demodulation for Digital Data

% The code is written by SalimWireless.Com
clc;
clear;
close all;


% PAM Modulation and Demodulation Example


% Parameters
M = 8; % PAM order (8-PAM)
numSymbols = 100; % Number of symbols to transmit
Fs = 1000; % Sampling frequency
T = 1; % Symbol duration


% Generate random data
data = randi([0 M-1], 1, numSymbols); % Random data symbols


% PAM Modulation
% Map the data symbols to PAM levels
pamLevels = linspace(-M + 1, M - 1, M); % PAM levels
modulatedSignal = pamLevels(data + 1); % Map data to PAM levels


% Create a time vector
t = 0:1/Fs:T*numSymbols-1/Fs;


% Upsample and create PAM signal
upsampledSignal = zeros(1, length(t));
for i = 1:numSymbols
upsampledSignal((i-1)*Fs+1:i*Fs) = modulatedSignal(i);
end


% Add some noise
snr = 20; % Signal-to-noise ratio
noisySignal = awgn(upsampledSignal, snr, 'measured');


% PAM Demodulation
% Sample the noisy signal at symbol rate
receivedSymbols = noisySignal(1:Fs:end);


% Map received symbols to nearest PAM level
demodulatedData = zeros(1, numSymbols);
for i = 1:numSymbols
[~, demodulatedData(i)] = min(abs(receivedSymbols(i) - pamLevels));
end


% Plotting
figure;
subplot(4,1,1);
stem(data);
title('Original Data');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, upsampledSignal);
title('Transmitted PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, noisySignal);
title('Received Noisy PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
stem(demodulatedData);
title('Demodulated Data');
xlabel('Symbol Index');
ylabel('PAM Level');
grid on;


% Display results
disp('Original Data:');
disp(data);
disp('Demodulated Data:');
disp(demodulatedData);
web('https://www.salimwireless.com/search?q=pulse%20amplitude%20modulation', '-browser');

Output






Copy the MATLAB Code from here



Simulation Results for comparison of PAM, PWM, PPM, DM, and PCM

 
 
 

  
 

 
 
 
 

 
 
 

Explore Signal Processing Simulations

Further Reading

  1. Pulse Amplitude Modulation and Demodulation theory
  2. Is PAM a Digital Modulation Technique ?
  3. Pulse Width Modulation (PWM) and Demodulation
  4. Pulse Position Modulation (PPM) and Demodulation
  5. Delta Modulation and demodulation
  6. Pulse Code Modulation (PCM)
  7. Quantization Signal to Noise Ration (Q-SNR)
  8. MATLAB Code for Pulse Width Modulation and Demodulation
  9. MATLAB Code for Pulse Position Modulation (PPM) and Demodulation
  10. MATLAB Code for Pulse Code Modulation (PCM) and demodulation

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...