Skip to main content

Relationship between Signal vs Noise (SNR)


Signal


A signal represents the information-bearing entity that one wants to transmit, analyze, or process. It could be an electrical signal, electromagnetic wave, acoustic wave, or any other form of a carrier that carries information



Noise


Noise refers to unwanted disturbances or interference that degrades the quality of the signal. It can arise from various sources, including electronic components, environmental factors, transmission channels, etc.





Relationship between Signal and Noise

 




Based on the aforementioned mathematical section, SNR (or SNR value in dB) will be zero if signal power equals noise power.

The SNR value, or SNR value in dB, will be positive if the signal power is greater than the noise power.

Negative SNR (or SNR value in dB) occurs when the noise power exceeds the signal power.

In terms of mathematics, a higher positive SNR value denotes a stronger signal relative to noise power. In contrast, a lower negative SNR value denotes a higher level of noise relative to the signal power.

A higher SNR indicates a stronger, more distinguishable signal relative to the noise, leading to better signal quality and lower error rates in communication or processing. For more details click here



Example
MATLAB Script



% Parameters
fs = 1000; % Sampling frequency (Hz)
t = 0:1/fs:1-1/fs; % Time vector (1 second)
f_signal = 10; % Frequency of the signal (10 Hz)


% Generate a sinusoidal signal
signal = sin(2*pi*f_signal*t);


% Add Gaussian noise to the signal
SNR_dB1 = -5; % Desired SNR in dB
SNR_dB2 = 5; % Desired SNR in dB
SNR_dB3 = 25; % Desired SNR in dB
noise_power1 = 10^(-SNR_dB1/10); % Noise power calculated from SNR
noise_power2 = 10^(-SNR_dB2/10); % Noise power calculated from SNR
noise_power3 = 10^(-SNR_dB3/10); % Noise power calculated from SNR
noise1 = sqrt(noise_power1) * randn(size(t)); % Gaussian noise
noise2 = sqrt(noise_power2) * randn(size(t)); % Gaussian noise
noise3 = sqrt(noise_power3) * randn(size(t)); % Gaussian noise



% Corrupt the signal with noise
signal_noisy1 = signal + noise1;
signal_noisy2 = signal + noise2;
signal_noisy3 = signal + noise3;


% Calculate SNR
SNR_calculated1 = 10 * log10(sum(signal.^2) / sum(noise1.^2));
SNR_calculated2 = 10 * log10(sum(signal.^2) / sum(noise2.^2));
SNR_calculated3 = 10 * log10(sum(signal.^2) / sum(noise3.^2));


% Plot the signals
figure;
subplot(4,1,1);
plot(t, signal);
title('Original Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, signal_noisy1);
title('Signal Corrupted by Noise at SNR = -5 dB');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, signal_noisy2);
title('Signal Corrupted by Noise at SNR = 5 dB');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
plot(t, signal_noisy3);
title('Signal Corrupted by Noise at SNR = 25 dB');
xlabel('Time (s)');
ylabel('Amplitude');


% Display the plot
sgtitle('Signal, Noise, and Noisy Signal');

 


Copy the MATLAB Code from here

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...