Skip to main content

Relationship between Signal vs Noise (SNR)


Signal


A signal represents the information-bearing entity that one wants to transmit, analyze, or process. It could be an electrical signal, electromagnetic wave, acoustic wave, or any other form of a carrier that carries information



Noise


Noise refers to unwanted disturbances or interference that degrades the quality of the signal. It can arise from various sources, including electronic components, environmental factors, transmission channels, etc.





Relationship between Signal and Noise

 




Based on the aforementioned mathematical section, SNR (or SNR value in dB) will be zero if signal power equals noise power.

The SNR value, or SNR value in dB, will be positive if the signal power is greater than the noise power.

Negative SNR (or SNR value in dB) occurs when the noise power exceeds the signal power.

In terms of mathematics, a higher positive SNR value denotes a stronger signal relative to noise power. In contrast, a lower negative SNR value denotes a higher level of noise relative to the signal power.

A higher SNR indicates a stronger, more distinguishable signal relative to the noise, leading to better signal quality and lower error rates in communication or processing. For more details click here



Example
MATLAB Script



% Parameters
fs = 1000; % Sampling frequency (Hz)
t = 0:1/fs:1-1/fs; % Time vector (1 second)
f_signal = 10; % Frequency of the signal (10 Hz)


% Generate a sinusoidal signal
signal = sin(2*pi*f_signal*t);


% Add Gaussian noise to the signal
SNR_dB1 = -5; % Desired SNR in dB
SNR_dB2 = 5; % Desired SNR in dB
SNR_dB3 = 25; % Desired SNR in dB
noise_power1 = 10^(-SNR_dB1/10); % Noise power calculated from SNR
noise_power2 = 10^(-SNR_dB2/10); % Noise power calculated from SNR
noise_power3 = 10^(-SNR_dB3/10); % Noise power calculated from SNR
noise1 = sqrt(noise_power1) * randn(size(t)); % Gaussian noise
noise2 = sqrt(noise_power2) * randn(size(t)); % Gaussian noise
noise3 = sqrt(noise_power3) * randn(size(t)); % Gaussian noise



% Corrupt the signal with noise
signal_noisy1 = signal + noise1;
signal_noisy2 = signal + noise2;
signal_noisy3 = signal + noise3;


% Calculate SNR
SNR_calculated1 = 10 * log10(sum(signal.^2) / sum(noise1.^2));
SNR_calculated2 = 10 * log10(sum(signal.^2) / sum(noise2.^2));
SNR_calculated3 = 10 * log10(sum(signal.^2) / sum(noise3.^2));


% Plot the signals
figure;
subplot(4,1,1);
plot(t, signal);
title('Original Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, signal_noisy1);
title('Signal Corrupted by Noise at SNR = -5 dB');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, signal_noisy2);
title('Signal Corrupted by Noise at SNR = 5 dB');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
plot(t, signal_noisy3);
title('Signal Corrupted by Noise at SNR = 25 dB');
xlabel('Time (s)');
ylabel('Amplitude');


% Display the plot
sgtitle('Signal, Noise, and Noisy Signal');

 


Copy the MATLAB Code from here

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...