Skip to main content

Relationship between Signal vs Noise (SNR)


Signal


A signal represents the information-bearing entity that one wants to transmit, analyze, or process. It could be an electrical signal, electromagnetic wave, acoustic wave, or any other form of a carrier that carries information



Noise


Noise refers to unwanted disturbances or interference that degrades the quality of the signal. It can arise from various sources, including electronic components, environmental factors, transmission channels, etc.





Relationship between Signal and Noise

 




Based on the aforementioned mathematical section, SNR (or SNR value in dB) will be zero if signal power equals noise power.

The SNR value, or SNR value in dB, will be positive if the signal power is greater than the noise power.

Negative SNR (or SNR value in dB) occurs when the noise power exceeds the signal power.

In terms of mathematics, a higher positive SNR value denotes a stronger signal relative to noise power. In contrast, a lower negative SNR value denotes a higher level of noise relative to the signal power.

A higher SNR indicates a stronger, more distinguishable signal relative to the noise, leading to better signal quality and lower error rates in communication or processing. For more details click here



Example
MATLAB Script



% Parameters
fs = 1000; % Sampling frequency (Hz)
t = 0:1/fs:1-1/fs; % Time vector (1 second)
f_signal = 10; % Frequency of the signal (10 Hz)


% Generate a sinusoidal signal
signal = sin(2*pi*f_signal*t);


% Add Gaussian noise to the signal
SNR_dB1 = -5; % Desired SNR in dB
SNR_dB2 = 5; % Desired SNR in dB
SNR_dB3 = 25; % Desired SNR in dB
noise_power1 = 10^(-SNR_dB1/10); % Noise power calculated from SNR
noise_power2 = 10^(-SNR_dB2/10); % Noise power calculated from SNR
noise_power3 = 10^(-SNR_dB3/10); % Noise power calculated from SNR
noise1 = sqrt(noise_power1) * randn(size(t)); % Gaussian noise
noise2 = sqrt(noise_power2) * randn(size(t)); % Gaussian noise
noise3 = sqrt(noise_power3) * randn(size(t)); % Gaussian noise



% Corrupt the signal with noise
signal_noisy1 = signal + noise1;
signal_noisy2 = signal + noise2;
signal_noisy3 = signal + noise3;


% Calculate SNR
SNR_calculated1 = 10 * log10(sum(signal.^2) / sum(noise1.^2));
SNR_calculated2 = 10 * log10(sum(signal.^2) / sum(noise2.^2));
SNR_calculated3 = 10 * log10(sum(signal.^2) / sum(noise3.^2));


% Plot the signals
figure;
subplot(4,1,1);
plot(t, signal);
title('Original Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, signal_noisy1);
title('Signal Corrupted by Noise at SNR = -5 dB');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, signal_noisy2);
title('Signal Corrupted by Noise at SNR = 5 dB');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
plot(t, signal_noisy3);
title('Signal Corrupted by Noise at SNR = 25 dB');
xlabel('Time (s)');
ylabel('Amplitude');


% Display the plot
sgtitle('Signal, Noise, and Noisy Signal');

 


Copy the MATLAB Code from here

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What are the main lobe and side lobes in Beamforming

    What are the main lobe and side lobes in Beamforming? You've probably noticed that in the diagram of  beamforming , there are two types of lobes in beamforming patterns. One is the main lobe, while the others are side lobes. We intend to communicate with receivers with a stronger directional path from the transmitter when we produce beams for wireless communication. We can also see side lobes in this scenario. These side lobes, on the other hand, are not necessary for effective communication. As a result, we take various procedures to remove those side lobes or to reduce the number of side lobes as much as feasible; otherwise, inter-symbol interference  occurs, and signal quality suffers. Figure: Illustration of Main Lobe and Side lobes, where the x-axis denotes the angle of arrival (AOA) and angle of departure (AOD), respectively, while, the y-axis denotes the gain/power in dB (decibel).     In the case of MIMO antennas, our major goal is to reduce int...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation 📘 Overview & Theory of Pulse Amplitude Modulation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital Data 🧮 Other Pulse Modulation Techniques (PWM, PPM, DM, PCM) Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm = 10; % frequency of the message signal fc = 100; % frequency of the carrier signal fs = 100...