Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Generation of Chirp Signals in MATLAB

 

for up-chirp generation

fs = 1000;           % Sampling frequency (Hz)
t = 0:1/fs:1;         % Time vector (1 second duration)
f_start = 50;         % Starting frequency (Hz)
f_end = 200;          % Ending frequency (Hz)
% Generate up-chirp signal
up_chirp = chirp(t, f_start, 1, f_end, 'linear');
plot(up_chirp)

Output

 


 

 

 

for down-chirp generation

fs = 1000;           % Sampling frequency (Hz)
t = 0:1/fs:1;         % Time vector (1 second duration)
f_start = 200;         % Starting frequency (Hz)
f_end = 50;          % Ending frequency (Hz)
% Generate up-chirp signal
down_chirp = chirp(t, f_start, 1, f_end, 'linear');
plot(down_chirp)

 Output

 


 

 

 

for decoding of the up-chirp signal

 clc;
clear all;
close all;

fs = 1000;           % Sampling frequency (Hz)
t = 0:1/fs:1;         % Time vector (1 second duration)
f_start = 50;         % Starting frequency (Hz)
f_end = 200;          % Ending frequency (Hz)
% Generate up-chirp signal
up_chirp = chirp(t, f_start, 1, f_end, 'linear');



% Perform Short-Time Fourier Transform (STFT)
window_size = 64;
hop_size = 32;
[spectrogram, frequencies, time] = spectrogram(up_chirp, window_size, hop_size, [], fs);

% Extract instantaneous frequency
instantaneous_frequency = fs/(2*pi) * angle(spectrogram(2,:));
figure(); imagesc(time, frequencies, 10*log10(abs(spectrogram)));
 

 Output


 

 

 

 

for decoding of down-chirp signal  

fs = 1000;           % Sampling frequency (Hz)
t = 0:1/fs:1;         % Time vector (1 second duration)
f_start = 200;         % Starting frequency (Hz)
f_end = 50;          % Ending frequency (Hz)
% Generate up-chirp signal
down_chirp = chirp(t, f_start, 1, f_end, 'linear');



% Perform Short-Time Fourier Transform (STFT)
window_size = 64;
hop_size = 32;
[spectrogram, frequencies, time] = spectrogram(down_chirp, window_size, hop_size, [], fs);

% Extract instantaneous frequency
instantaneous_frequency = fs/(2*pi) * angle(spectrogram(2,:));
figure(); imagesc(time, frequencies, 10*log10(abs(spectrogram)));

Output


 
 
 
 
 
 
 
 

 

Copy the MATLAB Code from here

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

MATLAB Code for Delta Modulation (DM) and Demodulation

  MATLAB Script  clc; clear all; close all; fs = 10000; fm = 100; t = 0:1/fs:1000/fs; % Time Duration = 1000/10000 = 0.1 second x = 5*sin(2*pi*100*t); % Define Message Signal with peak voltage 5V and frequency 100Hz plot(t, x); hold on y = [0]; % Output DM signal i.e. stream of 1 or 0 xr = 0; % Output of Integrator i.e. staircase approximation; initial value = 0 del = 0.4; % Stepsize for i = 1:length(x)-1 if xr(i) <= x(i) % If current sample greater than the previous values or output of the integrator, output of DM = 1 d = 1; xr(i+1) = xr(i) + del; % Staircase approximated value else d = 0; xr(i+1) = xr(i) - del; % If current sample less than the previous values or output of the integrator, output of DM = 0 end y = [y d]; end stairs(t, xr); % Show the staircase approximated signal title('Staircase Approximated Signal'); hold off MSE = sum((x - xr).^2) / length(x); % Mean Squared Error (MSE) disp(['Mean Squared Error (MSE): ', num2str(MSE)]); figure; % Delta M...

Analog and Digital Communication Mini Projects | FM, Telecommunication, Mod...

  Mini Project Ideas 1. You can do your mini project on analog communication topic such as FM, walkie-talkie, etc. [1.1]  Analog Communication Based Project [1.2] MATLAB Code for Frequency Modulation (FM) 2. Compare the ASK, FSK, and PSK systems' relative performances. ( Include an introduction, concise descriptions of ASK, FSK, and PSK, MATLAB, and Simulink . You can then compare ASK, FSK, and PSK by creating BER vs. SNR graphs for each of those modulations, as well as by comparing their bandwidth, noise resistivity, complexity, and other characteristics. ) 3. M-ary Modulation Based Mini Projects (You can go for this project if you are interested in doing projects based on frequently used and modern modulation techniques. You can compare the performance analysis of various modulation schemes, like, bit rate, complexity, SNR v/s BER graph. You know frequently used modulation technique is m ary QPSK. But now QAM is also becoming popular due to its less complexity. But there is...