Skip to main content

Why is Time-bandwidth Product Important?


Time-Bandwidth Product (TBP)

The time-bandwidth product (TBP) is defined as:

TBP = Δf Δt
  • Δf (Bandwidth): The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread.
  • Δt (Time duration): The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero.

The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.

 

 

To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal.

We apply spread spectrum techniques in wireless communication for various reasons, such as interference resilience, security, robustness in multipath, etc. But in spread spectrum techniques, we compromise some bandwidth. 

The time-bandwidth product for Gaussian-shaped pulses is 0.44 (approx.).

If the time-bandwidth product of a signal is >> 1, then the signal bandwidth (B) is much greater than what is required for transmitting the data rate (Rb​). . So, in this case, we are unable to utilize the whole available bandwidth. For this case, spectrum efficiency will be less.

To your knowledge, the product of the variance of time and variance of bandwidth for a Gaussian signal is 0.25, and for a triangular-shaped signal, it is 0.3. 


Example

 Time-Bandwidth Product for a raise cosine filter

Let’s assume we have designed a raised cosine filter with a roll-off factor of 0.25. The symbol rate for transmission is 100 symbols per second, and the number of samples per symbol is 10. Also, assume the filter span is 2, meaning the duration is up to 2 symbol times.

 

Bandwidth Calculation for a raised cosine filter:

The bandwidth of the raised cosine filter is calculated as:

Bandwidth = (Symbol Rate × (1 + Roll-off Factor)) / 2

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

 

Time Duration for the Raise Cosine Filter if filer span = 2:

The time duration for the filter is:

Filter Duration = Filter Span × One Symbol Duration

Filter Duration = 2 × 0.01 = 0.02 seconds

Time-Bandwidth Product (TBP):

Now, the time-bandwidth product (TBP) is:

TBP = 0.02 × 62.5 = 1.25

 

Time Duration for the Raise Cosine Filter if filer span = 6:

If the filter span is 6, then the time-bandwidth product will be:

Now, TBP = 0.06 × 62.5 = 3.75

 

Conclusion: The raised cosine filter reduces the effect of intersymbol interference (ISI) during signal transmission. Increasing the bandwidth helps mitigate ISI to a greater extent, but it also increases the time-bandwidth product, making the system less bandwidth-efficient.

 

MATLAB Code for Time-Bandwidth product of a Raise Cosine Filter

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Parameters
beta = 0.25; % Roll-off factor (moderate, 0.25 for balance)
span = 2; % Filter span in symbols (moderate duration)
sps = 10; % Samples per symbol (higher ensures smooth waveform)
symbolRate = 1e2; % Symbol rate in Hz

% Generate the Raised Cosine Filter
rcFilter = rcosdesign(beta, span, sps, 'sqrt');

% Plot the Impulse Response
t = (-span/2 : 1/sps : span/2) * (1/symbolRate);
figure;
subplot(3,1,1);
plot(t, rcFilter, 'LineWidth', 1.5);
title('Raised Cosine Filter Impulse Response');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Analyze Frequency Response
[H, F] = freqz(rcFilter, 1, 1024, sps * symbolRate);
subplot(3,1,2);
plot(F, abs(H), 'LineWidth', 1.5);
title('Raised Cosine Filter Frequency Response');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

% Time-Bandwidth Product Calculation
timeDuration = span * (1 / symbolRate); % Filter time duration
bandwidth = (1 + beta) * (symbolRate / 2); % Bandwidth in Hz
TBP = timeDuration * bandwidth; % Time-Bandwidth Product

% Display Results
disp(['Time Duration (s): ', num2str(timeDuration)]);
disp(['Bandwidth (Hz): ', num2str(bandwidth)]);
disp(['Time-Bandwidth Product: ', num2str(TBP)]);

% Simulate Filtered Signal
numSymbols = 100; % Number of symbols to transmit
data = randi([0 1], numSymbols, 1) * 2 - 1; % Random binary data (BPSK)
upsampledData = upsample(data, sps); % Upsample data
txSignal = conv(upsampledData, rcFilter, 'same'); % Filtered signal

% Plot Transmitted Signal
subplot(3,1,3);
plot(txSignal(1:200), 'LineWidth', 1.5); % Plot first few samples
title('Filtered Transmitted Signal');
xlabel('Sample Index');
ylabel('Amplitude');
grid on;


Output

 

 

 

 

 

Time Duration (s): 0.02
Bandwidth (Hz): 62.5
Time-Bandwidth Product: 1.25
 

Copy the MATLAB Code above from here

 

 

 MATLAB Code for the Time-Bandwidth Product of Gaussian Noise

%The code is devloped by SalimWireless.Com

clc;
clear;
close all;

% Step 1: Generate Gaussian pulse
t = 0:0.01:1; % Time vector
sigma = 1; % Standard deviation
gaussian_pulse = exp(-t.^2 / (2 * sigma^2));

% Step 2: Calculate RMS time duration
power_signal = gaussian_pulse.^2;
rms_time = sqrt(sum(t.^2 .* power_signal) / sum(power_signal));

% Step 3: Calculate Frequency Bandwidth
Fs = 100; % Sampling frequency
N = length(gaussian_pulse);
f = (-N/2:N/2-1) * (Fs / N); % Frequency vector
G_f = fftshift(fft(gaussian_pulse)); % Fourier transform

power_spectrum = abs(G_f).^2;
rms_freq = sqrt(sum(f.^2 .* power_spectrum) / sum(power_spectrum));

% Step 4: Compute TBP
TBP_rms = rms_time * rms_freq;

% Display results
disp(['RMS Time Duration (Delta t): ', num2str(rms_time)]);
disp(['RMS Frequency Bandwidth (Delta f): ', num2str(rms_freq)]);
disp(['Time-Bandwidth Product (TBP): ', num2str(TBP_rms)]);

Output

RMS Time Duration (Delta t): 0.50383
RMS Frequency Bandwidth (Delta f): 0.98786
Time-Bandwidth Product (TBP): 0.49772

 

Copy the MATLAB Code above from here

 

 

Further Reading 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

 There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 1. Equal gain combining method We add the correlated data streams from different antennas in the equal gain combining method. Then we multiply the resultant data with (1/(number of antennas)) For example, for two antenna gain-combining  If the received symbols are y1 and y2, then  Equal combing gain, y_egc = 0.5 * (y1 + y2) 2. Maximum ratio combining method We multiply the individual data streams with weights in the maximum ratio combining method. More weightage is multiplied by those data streams with maximum {|h|^2}, where h denotes the channel impulse response. And less weightage is multiplied by those data streams with corresponding small value of  {|h|^2}.  Then we sum the data streams to improve SNR. In the case of Maximum Ratio Combining, if y1 an...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection

Frequency Bands Ultra-Wideband... UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi). Key Features of UWB Bands UWB in order to bring decimeter-level positioning to the market There is almost no interference with other radio communication systems Multipath signal propagation resistance  resistance to noise  Low-power transceiver required Ultra Wide Band or UWB comes under the  Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz. UWB frequency range: 3.1 GHz to 10.6 GHz Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field co...