Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks

Coherence Bandwidth and Coherence Time

 

Coherence Bandwidth

Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics.

coherence bandwidth is The inverse of Doppler spread delay time, or any spread delay time due to fading in general. The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae:

Coherence bandwidth = 1/(delay spread time)

Or, Coherence Bandwidth = 1/(root-mean-square delay spread time)

(Coherence bandwidth in Hertz)

For instance, the coherence bandwidth is 2 MHz when the delay spread is {1/(2*10^6)} = 500 ns in a household indoor environment.


For narrowband approximation,

Coherence Bandwidth = 1/root-mean-square delay spread time


Coherence bandwidth is a measure of the frequency spread over which a wireless communication channel behaves approximately like a flat fading channel. In other words, it's the bandwidth over which the channel's frequency response remains relatively constant. Coherence bandwidth is a crucial parameter in the design of wireless communication systems, particularly for systems that employ frequency-selective fading channel models.

 

Frequency Auto-correlation Function

The frequency auto-correlation function RH(Δf) of the channel transfer function H(f) is defined as: 


RH(Δf) = E{H(f)H∗(f+Δf)}


E{⋅} denotes the expectation operator, and H*(t) is the complex conjugate of H(t).


Coherence Bandwidth Definition

The coherence bandwidth is often defined as the frequency separation Δf over which the auto-correlation function RH(Δf) drops to a certain fraction of its maximum value, typically 0.5 or 1/e


Bc≈1/5*Tm


Where Tm is the root-mean-square delay spread time, which characterizes the extent of multi-path propagation.

 

 

Coherence Time

Coherence time, in the context of wireless communication, is a fundamental concept related to the temporal properties of wireless channels. It represents the duration for which the channel conditions remain approximately constant. In other words, it's the amount of time during which the wireless channel's characteristics, including phase, amplitude, and delay, can be considered relatively stable.

The relationship between coherence time and coherence bandwidth depends on the specific characteristics of the wireless channel and can vary from one scenario to another. In some cases, you may find that they are inversely related, meaning that a wider coherence bandwidth corresponds to a shorter coherence time and vice versa. However, this relationship is not a strict rule, and the actual values of coherence time and coherence bandwidth depend on the specific channel conditions and environment.
The coherence time and coherence bandwidth are related but not simply inversely proportional to each other. They are both important parameters for characterizing the time and frequency variations in wireless channels, and their values can vary depending on the specific channel properties and circumstances.
 

Time Auto-correlation Function

The time auto-correlation function RH(Δt) of the channel impulse response h(t) is defined as: 

RH(Δt)=E{h(t)h∗(t+Δt)}

E{⋅} denotes the expectation operator, and h∗(t) is the complex conjugate of h(t).

Coherence Time Definition

The coherence time is often defined as the time lag Δt over which the auto-correlation function RH(Δt) drops to a certain fraction of its maximum value, typically 0.5 or 1/e
 

Tc≈1/(fD)

Where fD is the Doppler spread, which characterizes the rate of change of the channel due to relative motion. 

For example, if a vehicle is moving at 30 m/s and the carrier frequency is 2 GHz:

Then, doppler spread, fD = v*f/c= (30 * 2 * 10^9) / (3 * 10^8) = 200 Hz

So, coherence time using the general approximation is 1/(200) = 5.02 ms (approx)
 
 

 

MATLAB Code to find Coherence Time and Coherence Bandwidth

 

Output

Coherence Bandwidth: 498867.5012 Hz
Coherence Time: 2.0045e-06 seconds

 

 
 
Fig 1: PSD of the generated frequency components

Relationship between Coherence Time and Delay Spread

The coherence time of a wireless channel is related to its delay spread. Delay spread refers to the time difference between the arrival of the first and last significant multipath components of a signal. Coherence time represents the time over which the channel's impulse response remains relatively constant, and it's inversely proportional to the delay spread.

The relationship between coherence time (Tc) and delay spread (Td​) can be approximated using the formula:

Tc≈1/β⋅Td​

where β is a factor depending on the specific characteristics of the wireless environment, typically ranging from 2 to 4.

 

MATLAB Code to find Relationship between Coherence Time and delay Spread 


 

Output

Coherence Time: 333333.3333 seconds

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

OFDM in MATLAB

  MATLAB Script % The code is written by SalimWireless.Com 1. Initialization clc; clear all; close all; 2. Generate Random Bits % Generate random bits numBits = 100; bits = randi([0, 1], 1, numBits); 3. Define Parameters % Define parameters numSubcarriers = 4; % Number of subcarriers numPilotSymbols = 3; % Number of pilot symbols cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length) 4. Add Cyclic Prefix % Add cyclic prefix dataWithCP = [bits(end - cpLength + 1:end), bits]; 5. Insert Pilot Symbols % Insert pilot symbols pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern) dataWithPilots = [pilotSymbols, dataWithCP];   6. Perform OFDM Modulation (IFFT) % Perform OFDM modulation (IFFT) dataMatrix = reshape(dataWithPilots, numSubcarriers, []); ofdmSignal = ifft(dataMatrix, numSubcarriers); ofdmSignal = reshape(ofdmSignal, 1, []); 7. Display the Generated Data % Display the generated data disp("Original Bits:"); ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Adaptive Equalizer to mitigate Channel Distortion - in MATLAB

  Adaptive equalizer adjusts its parameters based on the characteristics of the communication channel. It uses adaptive algorithms to continuously estimate and correct for channel distortion, aiming to minimize errors in the received signal. Adaptive equalizers are versatile and effective in varying channel conditions.   MATLAB Code clc; clear; close all; % Parameters N = 100000; % Number of samples filter_order = 10; % Order of the adaptive filter lambda = 0.99; % Forgetting factor for RLS algorithm delta = 1; % Initial value for the inverse correlation matrix SNR_range = -20:1:20; % SNR range in dB ber = zeros(length(SNR_range), 1); % Initialize BER array % Generate a random signal original_signal = randi([0, 1], N, 1) * 2 - 1; % Bipolar signal (-1, 1) % Channel impulse response h = [0.8, 0.5, 0.2]; % Loop over SNR values for snr_idx = 1:length(SNR_range)     SNR = SNR_range(snr_idx); % Current SNR value          % Pass the signal...