Skip to main content

Coherence Bandwidth and Coherence Time


 

Coherence Bandwidth

Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics.

coherence bandwidth is The inverse of Doppler spread delay time, or any spread delay time due to fading in general. The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae:

Coherence bandwidth = 1/(delay spread time)

Or, Coherence Bandwidth = 1/(root-mean-square delay spread time)

(Coherence bandwidth in Hertz)

For instance, the coherence bandwidth is 2 MHz when the delay spread is {1/(2*10^6)} = 500 ns in a household indoor environment.


For narrowband approximation,

Coherence Bandwidth = 1/root-mean-square delay spread time


Coherence bandwidth is a measure of the frequency spread over which a wireless communication channel behaves approximately like a flat fading channel. In other words, it's the bandwidth over which the channel's frequency response remains relatively constant. Coherence bandwidth is a crucial parameter in the design of wireless communication systems, particularly for systems that employ frequency-selective fading channel models.

 

Frequency Auto-correlation Function

The frequency auto-correlation function RH(Δf) of the channel transfer function H(f) is defined as: 


RH(Δf) = E{H(f)H∗(f+Δf)}


E{⋅} denotes the expectation operator, and H*(t) is the complex conjugate of H(t).


Coherence Bandwidth Definition

The coherence bandwidth is often defined as the frequency separation Δf over which the auto-correlation function RH(Δf) drops to a certain fraction of its maximum value, typically 0.5 or 1/e


Bc≈1/5*Tm


Where Tm is the root-mean-square delay spread time, which characterizes the extent of multi-path propagation.

 

 

Coherence Time

Coherence time, in the context of wireless communication, is a fundamental concept related to the temporal properties of wireless channels. It represents the duration for which the channel conditions remain approximately constant. In other words, it's the amount of time during which the wireless channel's characteristics, including phase, amplitude, and delay, can be considered relatively stable.

The relationship between coherence time and coherence bandwidth depends on the specific characteristics of the wireless channel and can vary from one scenario to another. In some cases, you may find that they are inversely related, meaning that a wider coherence bandwidth corresponds to a shorter coherence time and vice versa. However, this relationship is not a strict rule, and the actual values of coherence time and coherence bandwidth depend on the specific channel conditions and environment.
The coherence time and coherence bandwidth are related but not simply inversely proportional to each other. They are both important parameters for characterizing the time and frequency variations in wireless channels, and their values can vary depending on the specific channel properties and circumstances.
 

Time Auto-correlation Function

The time auto-correlation function RH(Δt) of the channel impulse response h(t) is defined as: 

RH(Δt)=E{h(t)h∗(t+Δt)}

E{⋅} denotes the expectation operator, and h∗(t) is the complex conjugate of h(t).

Coherence Time Definition

The coherence time is often defined as the time lag Δt over which the auto-correlation function RH(Δt) drops to a certain fraction of its maximum value, typically 0.5 or 1/e
 

Tc≈1/(fD)

Where fD is the Doppler spread, which characterizes the rate of change of the channel due to relative motion. 

For example, if a vehicle is moving at 30 m/s and the carrier frequency is 2 GHz:

Then, doppler spread, fD = v*f/c= (30 * 2 * 10^9) / (3 * 10^8) = 200 Hz

So, coherence time using the general approximation is 1/(200) = 5.02 ms (approx)
 
 

 

MATLAB Code to find Coherence Time and Coherence Bandwidth

 

Output

Coherence Bandwidth: 498867.5012 Hz
Coherence Time: 2.0045e-06 seconds

 

 
 
Fig 1: PSD of the generated frequency components

Relationship between Coherence Time and Delay Spread

The coherence time of a wireless channel is related to its delay spread. Delay spread refers to the time difference between the arrival of the first and last significant multipath components of a signal. Coherence time represents the time over which the channel's impulse response remains relatively constant, and it's inversely proportional to the delay spread.

The relationship between coherence time (Tc) and delay spread (Td​) can be approximated using the formula:

Tc≈1/β⋅Td​

where β is a factor depending on the specific characteristics of the wireless environment, typically ranging from 2 to 4.

 

MATLAB Code to find Relationship between Coherence Time and delay Spread 


 

Output

Coherence Time: 333333.3333 seconds

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview of Delay Spread and Multi-path 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 📚 Further Reading 📂 Other Topics on RMS Delay Spread, Excess Delay ... 🧮 Multipath Components or MPCs 🧮 Online Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes for Calculating Different Types of delay Spreads Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory of Pulse Amplitude Moduation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

📘 How Beamforming Improves SNR 🧮 MATLAB Code 📚 Further Reading 📂 Other Topics on Beamforming in MATLAB ... MIMO / Massive MIMO Beamforming Techniques Beamforming Techniques MATLAB Codes for Beamforming... How Beamforming Improves SNR The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR)...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...