Skip to main content

Coherence Bandwidth and Coherence Time


 

Coherence Bandwidth

Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics.

coherence bandwidth is The inverse of Doppler spread delay time, or any spread delay time due to fading in general. The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae:

Coherence bandwidth = 1/(delay spread time)

Or, Coherence Bandwidth = 1/(root-mean-square delay spread time)

(Coherence bandwidth in Hertz)

For instance, the coherence bandwidth is 2 MHz when the delay spread is {1/(2*10^6)} = 500 ns in a household indoor environment.


For narrowband approximation,

Coherence Bandwidth = 1/root-mean-square delay spread time


Coherence bandwidth is a measure of the frequency spread over which a wireless communication channel behaves approximately like a flat fading channel. In other words, it's the bandwidth over which the channel's frequency response remains relatively constant. Coherence bandwidth is a crucial parameter in the design of wireless communication systems, particularly for systems that employ frequency-selective fading channel models.

 

Frequency Auto-correlation Function

The frequency auto-correlation function RH(Δf) of the channel transfer function H(f) is defined as: 


RH(Δf) = E{H(f)H∗(f+Δf)}


E{⋅} denotes the expectation operator, and H*(t) is the complex conjugate of H(t).


Coherence Bandwidth Definition

The coherence bandwidth is often defined as the frequency separation Δf over which the auto-correlation function RH(Δf) drops to a certain fraction of its maximum value, typically 0.5 or 1/e


Bc≈1/5*Tm


Where Tm is the root-mean-square delay spread time, which characterizes the extent of multi-path propagation.

 

 

Coherence Time

Coherence time, in the context of wireless communication, is a fundamental concept related to the temporal properties of wireless channels. It represents the duration for which the channel conditions remain approximately constant. In other words, it's the amount of time during which the wireless channel's characteristics, including phase, amplitude, and delay, can be considered relatively stable.

The relationship between coherence time and coherence bandwidth depends on the specific characteristics of the wireless channel and can vary from one scenario to another. In some cases, you may find that they are inversely related, meaning that a wider coherence bandwidth corresponds to a shorter coherence time and vice versa. However, this relationship is not a strict rule, and the actual values of coherence time and coherence bandwidth depend on the specific channel conditions and environment.
The coherence time and coherence bandwidth are related but not simply inversely proportional to each other. They are both important parameters for characterizing the time and frequency variations in wireless channels, and their values can vary depending on the specific channel properties and circumstances.
 

Time Auto-correlation Function

The time auto-correlation function RH(Δt) of the channel impulse response h(t) is defined as: 

RH(Δt)=E{h(t)h∗(t+Δt)}

E{⋅} denotes the expectation operator, and h∗(t) is the complex conjugate of h(t).

Coherence Time Definition

The coherence time is often defined as the time lag Δt over which the auto-correlation function RH(Δt) drops to a certain fraction of its maximum value, typically 0.5 or 1/e
 

Tc≈1/(fD)

Where fD is the Doppler spread, which characterizes the rate of change of the channel due to relative motion. 

For example, if a vehicle is moving at 30 m/s and the carrier frequency is 2 GHz:

Then, doppler spread, fD = v*f/c= (30 * 2 * 10^9) / (3 * 10^8) = 200 Hz

So, coherence time using the general approximation is 1/(200) = 5.02 ms (approx)
 
 

 

MATLAB Code to find Coherence Time and Coherence Bandwidth

 

Output

Coherence Bandwidth: 498867.5012 Hz
Coherence Time: 2.0045e-06 seconds

 

 
 
Fig 1: PSD of the generated frequency components

Relationship between Coherence Time and Delay Spread

The coherence time of a wireless channel is related to its delay spread. Delay spread refers to the time difference between the arrival of the first and last significant multipath components of a signal. Coherence time represents the time over which the channel's impulse response remains relatively constant, and it's inversely proportional to the delay spread.

The relationship between coherence time (Tc) and delay spread (Td​) can be approximated using the formula:

Tc≈1/β⋅Td​

where β is a factor depending on the specific characteristics of the wireless environment, typically ranging from 2 to 4.

 

MATLAB Code to find Relationship between Coherence Time and delay Spread 


 

Output

Coherence Time: 333333.3333 seconds

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...