Skip to main content

Role of an Equalizer in Channel Estimation


Equalizers in Wireless Communication

Why Equalizers Are Needed

Wireless channels distort signals due to:

  • Multipath propagation → Inter-Symbol Interference (ISI)
  • Frequency-selective fading → some frequencies attenuated more
  • Noise → Additive White Gaussian Noise (AWGN)

Received signal model:

r(t) = s(t) * h(t) + n(t)
  • s(t): transmitted signal
  • h(t): channel impulse response
  • n(t): noise

Goal of the equalizer: Recover s(t) from r(t) by compensating for the channel h(t).


Mathematical Model of a Simple Wireless Equalizer

r[n] = ÎŁ (h[k] * s[n-k]) + n[n],   k = 0..L-1

The equalizer applies a filter w[m] to estimate s[n]:

ŝ[n] = Σ (w[m] * r[n-m]),   m = 0..M-1

Goal: Minimize Mean Square Error (MSE):

min_w E[ |s[n] - ŝ[n]|² ]

Types of Equalizers

Linear Equalizer

  • Simple FIR filter w[m]
  • Zero-Forcing (ZF) equalizer: W_ZF = H⁻¹
  • Disadvantage: amplifies noise in weak channel frequencies

Minimum Mean Square Error (MMSE) Equalizer

  • Minimizes MSE considering noise
  • W_MMSE = (Há´´ H + σ_n² I)⁻¹ Há´´

Decision Feedback Equalizer (DFE)

  • Uses previous detected symbols to cancel ISI
  • Combines feedforward and feedback filters

Frequency-Domain View

If the channel is frequency-selective:

R(f) = H(f) S(f) + N(f)

Frequency-domain equalization:

Ŝ(f) = W(f) * R(f)

This is similar to audio equalizers: shape the frequency response to recover the original signal.


Simple Example: 2-Tap Channel

Channel: h[0] = 1, h[1] = 0.5

r[n] = s[n] + 0.5 s[n-1] + n[n]

Linear equalizer coefficients w[0], w[1] chosen such that:

ŝ[n] = w[0] r[n] + w[1] r[n-1] ≈ s[n]

Solution via MSE minimization approximately recovers s[n].


Summary

  • Equalizers undo channel distortion.
  • Crucial for multipath channels and frequency-selective fading.
  • Can be time-domain (FIR/IIR) or frequency-domain (FFT-based).
  • Trade-off between ISI reduction and noise enhancement (ZF vs MMSE).
  • Often combined with adaptive algorithms (LMS, RLS) in time-varying channels.
  • Wireless channels distort signals → equalizers restore them.
  • Discrete-time model: ŝ[n] = ÎŁ w[m] r[n-m]
  • Linear equalizer: direct FIR filter
  • MMSE equalizer: balances noise and ISI
  • Frequency-domain equalizer: multiplies by 1/H(f)
  • DFE: cancels ISI using past decisions

 

In general wireless communication systems are modeled as linear time-invariant (LTI) systems. The received signal is considered the convolution of a transmitted signal and channel input response (CIR) in the time domain. In the frequency domain, we observe a slight frequency shift. To retrieve the original signal at the receiver side, we need to go through the 'deconvolution' process. There the no standard process named 'deconvolution' in the case of wireless communication. The equalization process does the same job.


The function of an Equalizer

The channel estimate is followed by the equalizer's operation. A signal processing procedure known as equalization decreases inter-symbol interference, or ISI. Equalization is the reversal of distortion that a signal experiences during channel transmission. Since equalization is an inverse channel filter, we can say that.

When we transmit a signal from the transmitter side, it reaches at receiver with different time delays. So, a shift frequency shift occurs. The main function of an equalizer is to estimate the original signal from known pilot bits.

with the help of an equalizer, we can calculate the channel impulse response from the received bits/symbols and training bits.

Further Reading


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (τ) dτ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2π)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB code for Pulse Code Modulation (PCM) and Demodulation

📘 Overview & Theory 🧮 Quantization in Pulse Code Modulation (PCM) 🧮 MATLAB Code for Pulse Code Modulation (PCM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading MATLAB Code for Pulse Code Modulation clc; close all; clear all; fm=input('Enter the message frequency (in Hz): '); fs=input('Enter the sampling frequency (in Hz): '); L=input('Enter the number of the quantization levels: '); n = log2(L); t=0:1/fs:1; % fs nuber of samples have tobe selected s=8*sin(2*pi*fm*t); subplot(3,1,1); t=0:1/(length(s)-1):1; plot(t,s); title('Analog Signal'); ylabel('Amplitude--->'); xlabel('Time--->'); subplot(3,1,2); stem(t,s);grid on; title('Sampled Sinal'); ylabel('Amplitude--->'); xlabel('Time--->'); % Quantization Process vmax=8; vmin=-vmax; %to quanti...