Skip to main content

Role of an Equalizer in Channel Estimation


Equalizers in Wireless Communication

Why Equalizers Are Needed

Wireless channels distort signals due to:

  • Multipath propagation → Inter-Symbol Interference (ISI)
  • Frequency-selective fading → some frequencies attenuated more
  • Noise → Additive White Gaussian Noise (AWGN)

Received signal model:

r(t) = s(t) * h(t) + n(t)
  • s(t): transmitted signal
  • h(t): channel impulse response
  • n(t): noise

Goal of the equalizer: Recover s(t) from r(t) by compensating for the channel h(t).


Mathematical Model of a Simple Wireless Equalizer

r[n] = Σ (h[k] * s[n-k]) + n[n],   k = 0..L-1

The equalizer applies a filter w[m] to estimate s[n]:

ŝ[n] = Σ (w[m] * r[n-m]),   m = 0..M-1

Goal: Minimize Mean Square Error (MSE):

min_w E[ |s[n] - ŝ[n]|² ]

Types of Equalizers

Linear Equalizer

  • Simple FIR filter w[m]
  • Zero-Forcing (ZF) equalizer: W_ZF = H⁻¹
  • Disadvantage: amplifies noise in weak channel frequencies

Minimum Mean Square Error (MMSE) Equalizer

  • Minimizes MSE considering noise
  • W_MMSE = (Hᴴ H + σ_n² I)⁻¹ Hᴴ

Decision Feedback Equalizer (DFE)

  • Uses previous detected symbols to cancel ISI
  • Combines feedforward and feedback filters

Frequency-Domain View

If the channel is frequency-selective:

R(f) = H(f) S(f) + N(f)

Frequency-domain equalization:

Ŝ(f) = W(f) * R(f)

This is similar to audio equalizers: shape the frequency response to recover the original signal.


Simple Example: 2-Tap Channel

Channel: h[0] = 1, h[1] = 0.5

r[n] = s[n] + 0.5 s[n-1] + n[n]

Linear equalizer coefficients w[0], w[1] chosen such that:

ŝ[n] = w[0] r[n] + w[1] r[n-1] ≈ s[n]

Solution via MSE minimization approximately recovers s[n].


Summary

  • Equalizers undo channel distortion.
  • Crucial for multipath channels and frequency-selective fading.
  • Can be time-domain (FIR/IIR) or frequency-domain (FFT-based).
  • Trade-off between ISI reduction and noise enhancement (ZF vs MMSE).
  • Often combined with adaptive algorithms (LMS, RLS) in time-varying channels.
  • Wireless channels distort signals → equalizers restore them.
  • Discrete-time model: ŝ[n] = Σ w[m] r[n-m]
  • Linear equalizer: direct FIR filter
  • MMSE equalizer: balances noise and ISI
  • Frequency-domain equalizer: multiplies by 1/H(f)
  • DFE: cancels ISI using past decisions

 

In general wireless communication systems are modeled as linear time-invariant (LTI) systems. The received signal is considered the convolution of a transmitted signal and channel input response (CIR) in the time domain. In the frequency domain, we observe a slight frequency shift. To retrieve the original signal at the receiver side, we need to go through the 'deconvolution' process. There the no standard process named 'deconvolution' in the case of wireless communication. The equalization process does the same job.


The function of an Equalizer

The channel estimate is followed by the equalizer's operation. A signal processing procedure known as equalization decreases inter-symbol interference, or ISI. Equalization is the reversal of distortion that a signal experiences during channel transmission. Since equalization is an inverse channel filter, we can say that.

When we transmit a signal from the transmitter side, it reaches at receiver with different time delays. So, a shift frequency shift occurs. The main function of an equalizer is to estimate the original signal from known pilot bits.

with the help of an equalizer, we can calculate the channel impulse response from the received bits/symbols and training bits.

Further Reading


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

FFT Magnitude and Phase Spectrum using MATLAB

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 📚 Further Reading   MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude o...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / τ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) τ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and τ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...