Skip to main content

Role of an Equalizer in Channel Estimation


Equalizers in Wireless Communication

Why Equalizers Are Needed

Wireless channels distort signals due to:

  • Multipath propagation → Inter-Symbol Interference (ISI)
  • Frequency-selective fading → some frequencies attenuated more
  • Noise → Additive White Gaussian Noise (AWGN)

Received signal model:

r(t) = s(t) * h(t) + n(t)
  • s(t): transmitted signal
  • h(t): channel impulse response
  • n(t): noise

Goal of the equalizer: Recover s(t) from r(t) by compensating for the channel h(t).


Mathematical Model of a Simple Wireless Equalizer

r[n] = Σ (h[k] * s[n-k]) + n[n],   k = 0..L-1

The equalizer applies a filter w[m] to estimate s[n]:

ŝ[n] = Σ (w[m] * r[n-m]),   m = 0..M-1

Goal: Minimize Mean Square Error (MSE):

min_w E[ |s[n] - ŝ[n]|² ]

Types of Equalizers

Linear Equalizer

  • Simple FIR filter w[m]
  • Zero-Forcing (ZF) equalizer: W_ZF = H⁻¹
  • Disadvantage: amplifies noise in weak channel frequencies

Minimum Mean Square Error (MMSE) Equalizer

  • Minimizes MSE considering noise
  • W_MMSE = (Hᴴ H + σ_n² I)⁻¹ Hᴴ

Decision Feedback Equalizer (DFE)

  • Uses previous detected symbols to cancel ISI
  • Combines feedforward and feedback filters

Frequency-Domain View

If the channel is frequency-selective:

R(f) = H(f) S(f) + N(f)

Frequency-domain equalization:

Ŝ(f) = W(f) * R(f)

This is similar to audio equalizers: shape the frequency response to recover the original signal.


Simple Example: 2-Tap Channel

Channel: h[0] = 1, h[1] = 0.5

r[n] = s[n] + 0.5 s[n-1] + n[n]

Linear equalizer coefficients w[0], w[1] chosen such that:

ŝ[n] = w[0] r[n] + w[1] r[n-1] ≈ s[n]

Solution via MSE minimization approximately recovers s[n].


Summary

  • Equalizers undo channel distortion.
  • Crucial for multipath channels and frequency-selective fading.
  • Can be time-domain (FIR/IIR) or frequency-domain (FFT-based).
  • Trade-off between ISI reduction and noise enhancement (ZF vs MMSE).
  • Often combined with adaptive algorithms (LMS, RLS) in time-varying channels.
  • Wireless channels distort signals → equalizers restore them.
  • Discrete-time model: ŝ[n] = Σ w[m] r[n-m]
  • Linear equalizer: direct FIR filter
  • MMSE equalizer: balances noise and ISI
  • Frequency-domain equalizer: multiplies by 1/H(f)
  • DFE: cancels ISI using past decisions

 

In general wireless communication systems are modeled as linear time-invariant (LTI) systems. The received signal is considered the convolution of a transmitted signal and channel input response (CIR) in the time domain. In the frequency domain, we observe a slight frequency shift. To retrieve the original signal at the receiver side, we need to go through the 'deconvolution' process. There the no standard process named 'deconvolution' in the case of wireless communication. The equalization process does the same job.


The function of an Equalizer

The channel estimate is followed by the equalizer's operation. A signal processing procedure known as equalization decreases inter-symbol interference, or ISI. Equalization is the reversal of distortion that a signal experiences during channel transmission. Since equalization is an inverse channel filter, we can say that.

When we transmit a signal from the transmitter side, it reaches at receiver with different time delays. So, a shift frequency shift occurs. The main function of an equalizer is to estimate the original signal from known pilot bits.

with the help of an equalizer, we can calculate the channel impulse response from the received bits/symbols and training bits.

Further Reading


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2πfn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2π/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...