Skip to main content

Autocorrelation and Periodicity of a Signal

 

The auto-correlation of a periodic signal preserves the periodicity. For Example, we are transmitting a signal x(t) through the wireless medium. And we received the signal y(t) at the receiver.

y(t) = x(t) + n(t)

where x(t) is the additive white Gaussian noise (AWGN)


You can find that the periodicity of the autocorrelation of y(t) will be the periodicity of x(t)

In other words, we can say that the autocorrelation of the noisy signal is equal to the autocorrelation of the original periodic signal apart from 0 lag.


To find the spectral density (also known as the power spectral density, or PSD) from the autocorrelation function mathematically, you can use the Wiener-Khinchin theorem. This theorem states that the power spectral density of a stationary random process is the Fourier transform of its autocorrelation function. Here's the detailed mathematical process:
 

Wiener-Khinchin Theorem

Given a wide-sense stationary process X(t), let RX(Ī„) be its autocorrelation function. The power spectral density SX(f) is given by:

\( S_X(f) = \mathcal{F}\{R_X(\tau)\} = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} \, d\tau \)


Where F denotes the Fourier transform, j is the imaginary unit, f is the frequency, and Ī„ is the lag.
Steps to Compute PSD from Autocorrelation Function

 

Steps to Compute PSD from Autocorrelation Function

Compute the Autocorrelation Function RX(Ī„):
The autocorrelation function RX(Ī„) is defined as:

RX(Ī„)=E[X(t)X(t+Ī„)]

For a discrete-time signal x[n], the autocorrelation function RX[k] can be computed as:

RX[k]=∑(n=−∞,∞) x[n]x[n+k]

Apply the Fourier Transform:

To find the PSD, take the Fourier transform of the autocorrelation function RX(Ī„) (or RX[k] in the discrete case):

For continuous signals:

SX(f)=∫(−∞,∞) RX(Ī„)exp(−j2Ī€fĪ„ dĪ„)

For discrete signals:

SX(exp(jΉ))=∑(k=−∞,∞) RX[k]exp(−jΉk)

 

MATLAB Code to find the periodicity from auto-correlation of a periodic signal

 

Output

 


 

 

 

Another MATLAB Code to find the periodicity from autocorrelation of a noisy periodic signal

 

 

Output

 

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

LDPC Encoding and Decoding Techniques

📘 Overview & Theory 🧮 LDPC Encoding Techniques 🧮 LDPC Decoding Techniques 📚 Further Reading 'LDPC' is the abbreviation for 'low density parity check'. LDPC code H matrix contains very few amount of 1's and mostly zeroes. LDPC codes are error correcting code. Using LDPC codes, channel capacities that are close to the theoretical Shannon limit can be achieved.  Low density parity check (LDPC) codes are linear error-correcting block code suitable for error correction in a large block sizes transmitted via very noisy channel. Applications requiring highly reliable information transport over bandwidth restrictions in the presence of noise are increasingly using LDPC codes. 1. LDPC Encoding Technique The proper form of H matrix is derived from the given matrix by doing multiple row operations as shown above. In the above, H is parity check matrix and G is generator matrix. If you consider matrix H as [-P' | I] then matrix G will be...

Alamouti Scheme for 2x2 MIMO in MATLAB

📘 Overview & Theory 🧮 MATLAB Code for Alamouti Scheme 🧮 MATLAB Code for BER vs. SNR for Alamouti Scheme 🧮 Alamouti Scheme Simulator 🧮 Alamouti Scheme Transmission Table 📚 Further Reading    Read about the Alamouti Scheme first MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO % Clear any existing data and figures clc; clear; close all; % Define system parameters transmitAntennas = 2; % Number of antennas at the transmitter receiveAntennas = 2; % Number of antennas at the receiver symbolCount = 1000000; % Number of symbols to transmit SNR_dB = 15; % Signal-to-Noise Ratio in decibels % Generate random binary data for transmission rng(10); % Set seed for reproducibility transmitData = randi([0, 1], transmitAntennas, symbolCount); % Perform Binary Phase Shift Keying (BPSK) modulation modulatedSymbols = 1 - 2 * transmitData; % Define Alamouti's Precoding Matrix precodingMatrix = [1 1; -1i 1i]; % Encode and transmit dat...

What is a Chirp Signal?

📘 Overview & Theory 🧮 MATLAB Code 🧮 Chirp Signal Simuator 📚 Further Reading   Chirp signals are often used to find target objects. In a chirp signal, the frequency varies with time. For up-chirp signals, frequency increases with time. Oppositely, for down-chirp signals, the frequency decreases with time. Advantages of a chirp signal over a single-toned signal Better resolution Better Security The wide bandwidth of a chirp signal allows for capturing more detailed info about the target or object In a chirp signal, pulse compression enhances resolution by concentrating the signal energy into a shorter duration of time It is less susceptible to noise  It improves signal to noise ratio Up-Chirp Signal A sinusoidal up-chirp signal is denoted as Where A is the amplitude of this signal             f0 is the starting frequency of the chirp at t=0             Îą is the chirp rate or the...

ASK, FSK, and PSK

📘 Overview 📘 Amplitude Shift Keying (ASK) 📘 Frequency Shift Keying (FSK) 📘 Phase Shift Keying (PSK) 📘 Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? 🧮 MATLAB Codes 📘 Simulator for binary ASK, FSK, and PSK Modulation 📚 Further Reading ASK or OFF ON Keying ASK is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals. For example, "+5 Volt" (upper level) and "0 Volt" (lower level). To transmit binary bit "1", the transmitter sends "+5 Volts", and for bit "0", it sends no power. The receiver uses filters to detect whether a binary "1" or "0" was transmitted. ...