Skip to main content

Z Transform


Fundamentals of Z-Transform

1. What is the Z-Transform?

The Z-transform is a tool in digital signal processing to analyze discrete-time signals in the complex frequency domain. It is the discrete-time equivalent of the Laplace Transform.

Definition:

X(z) = Σ x[n] z^(-n),  n = -∞ to ∞
  • x[n]: discrete-time signal
  • z = re^(jω): complex variable
  • X(z): representation of the signal in z-domain

2. Region of Convergence (ROC)

Not all values of z make the series converge. The set of z values where the series converges is called the Region of Convergence (ROC).

The ROC is crucial for determining the stability and causality of the system.

3. Relationship with Other Transforms

Transform Relation
Z-transform Discrete-time signals, general complex frequency domain
DTFT X(e^(jω)) = X(z) |z=e^(jω)
Laplace Transform Continuous-time analog, s-domain equivalent

Note: The Z-transform is a generalized form of the DTFT, allowing both amplitude and phase analysis.

4. Key Properties of Z-Transform

  • Linearity: a x[n] + b y[n] ↔ a X(z) + b Y(z)
  • Time Shifting: x[n - k] ↔ z^(-k) X(z)
  • Scaling in z-domain: a^n x[n] ↔ X(z / a)
  • Convolution in time: x[n] * h[n] ↔ X(z) H(z)
  • Difference Equation to Transfer Function:
    y[n] + a₁ y[n-1] + ... + a_N y[n-N] = b₀ x[n] + ... + b_M x[n-M]
    Transfer function: H(z) = Y(z) / X(z) = (b₀ + b₁ z⁻¹ + ... + b_M z⁻M) / (1 + a₁ z⁻¹ + ... + a_N z⁻N)

5. Poles and Zeros Connection

Transfer functions are expressed as a ratio of polynomials in z⁻¹:

H(z) = B(z) / A(z)
  • Zeros: roots of B(z) = 0, frequencies suppressed
  • Poles: roots of A(z) = 0, frequencies amplified

Poles and zeros are directly related to filter design and frequency response analysis.

  • Z-transform converts discrete-time signals into the z-domain for analysis.
  • Useful for stability, frequency response, and filter design.
  • Poles and zeros determine resonance and attenuation.
  • Related to DTFT: X(e^(jω)) = X(z) |z=e^(jω)

Z-Transform Analysis of Time Series Models

The z-transform is a mathematical tool that converts a discrete-time signal (like a time series) into a complex frequency-domain representation. It is the discrete-time equivalent of the Laplace transform and is instrumental in analyzing the properties of time series models.

Z-Transform Representation

Using the backshift operator B, where BXt = Xt-1, the ARMA(p,q) model can be written in polynomial form:

(1 - φ1B - ... - φpBp)Xt = c + (1 + θ1B + ... + θqBq)εt

Let Φ(B) and Θ(B) be the polynomials in the backshift operator. Replacing B with z-1 gives the z-transform representation:

Φ(z-1)X(z) = c' + Θ(z-1)E(z)

where X(z) and E(z) are the z-transforms of the time series and the error term, respectively.

Transfer Function

The transfer function, H(z), of an ARMA model describes the relationship between the input (error term) and the output (time series) in the z-domain. It is defined as the ratio of the MA polynomial to the AR polynomial:

H(z) = X(z) / E(z) = Θ(z-1) / Φ(z-1)

  • For a pure AR(p) model, the transfer function is H(z) = 1 / Φ(z-1), which is an all-pole function.
  • For a pure MA(q) model, the transfer function is H(z) = Θ(z-1), which is an all-zero function.
  • An ARMA(p,q) model has a pole-zero transfer function.

Stability and Invertibility Conditions

The stability of an ARMA model is determined by the roots of the autoregressive polynomial, Φ(z). For a model to be stable (and thus stationary), all the roots of Φ(z) must lie outside the unit circle in the z-plane. This is equivalent to the poles of the transfer function H(z) lying inside the unit circle when expressed in terms of z.

The invertibility of an ARMA model is determined by the roots of the moving average polynomial, Θ(z). For the model to be invertible, all the roots of Θ(z) must lie outside the unit circle. Invertibility ensures that the model can be represented as a pure autoregressive process of infinite order.

 The discrete-time (DT) signal, which is a series of real or complex numbers, is transformed into a complex frequency-domain (z-domain or z-plane) representation using the Z-transform in signal processing.


Z Transform of a delta or unit impulse function


Example of Z Transform

For a real world example, when we send a unit impulse signal for testing input we receive multiple impulse responses at receiver due to different multipath. 

Let's assume, data signal x[n] = [2   -5    1    3]
and channel impulse responses h[n] = [-1  4   2]

Now simply multiply the data signal and channel co-efficients learned in elementary school

3  1  -5   2
    2   4  -1
-----------------------
6  14  -9   -17   13    -2

It can be represented as
x[n]*h[n] = 6z^(-5) + 14z^(-4)  - 9z^(-3)  - 17z^(-2)  +  13z^(-1)  -  2z

After computing discrete time z transform it is defined as simple multiplication of X(z) and H(z).

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...