Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

What is +/- 3dB Frequency Response? Applications ...


 

Remember, for most of the pass-band filters, the magnitude of the desired frequency range varies by 3dB. It is common for most of the pass-band filters.

The term '3dB frequency response' is used frequently to indicate that power has decreased to 50% of its maximum or original amount. However, it also states that the signal voltages have reduced to 0.707 of their highest value. So,

The -3dB comes from either 20 Log (0.707) or 10 Log (0.5).

Viewing the signal in the frequency domain is quite helpful. In electronic amplifiers, the +/-3dB limit is commonly utilized. It makes it clear whether or not the signal is a flat pass-band. You can observe that the signal in the case of pulse shaping is nearly flat along +/-3dB bandwidth.

The phrase "+/-3 dB" originally meant flatness in the above figure, not high- and low-frequency extension. For instance, one could state that "between 100 Hz and 18 kHz, the signal is flat, within +/-3 dB." Accordingly, a device's frequency response graph (i.e., for speakers) would not depart from a straight line between two frequencies by more than 3 dB in either direction.

Ad ---------------------------------------------------------------------

. - - -  - - - - - - - - . Filters

---------------------------------------------------------------------

Particularly in communication applications, continuous gain over a wider bandwidth is necessary. The difference in frequencies between +/-3 dB values is what constitutes the bandpass filter's bandwidth. Growth reasonably stays consistent in this area. Beyond the 3dB barrier, attenuation is significant, increasing the likelihood of information loss. Therefore, when the voltage is reduced from maximum to 0.707Max, or the power is reduced from maximum to half power, the signal's bandwidth is determined.

A less powerful signal than 50% of its original (maximum) power could be more helpful. 10log((P/2)/P) = 10log(0.5) = -3 dB is what we get when we take dB. As a result, at -3dB on the dB scale, half power is reached. Why does 3dB? Has to do with intolerance for a 50% fall in signal strength. It would have been -1.25dB if it had been 25%.

Application of -3dB Frequency Response

All sorts of filters frequently employ the -3dB point (low pass, band pass, high pass...). It only states that the filter only allows half of the power at that frequency to pass.


Q.1. The frequency at which the response is _-3db?

A. In the case of digital filter designing, we often use a bandpass filter to pass frequency components that fall in a particular range (e.g., frequencies that fall between h1 to h2 Hz). Here, the bandpass filter will allow the passing of the frequencies, which range from h1 to h2 Hz; other frequencies will be discarded. The signal is called a flat passband if the magnitude in this frequency range doesn't vary much. In most cases, for filters, it varies between +/- 3db in magnitude. 


Why Signal Amplitude Reduces After Bandpass Filtering

In real-world filters, the amplitude of a signal is often scaled due to unity energy normalization, which is applied to preserve the total signal power. This normalization ensures that the filtered signal maintains the same power as the original but results in a reduction in amplitude.

1. Signal Power Before Filtering

For a sinusoidal signal:

x(t) = A cos(2Ï€fct)

The power P_x of the signal is given by:

Px = (1/T) ∫ |x(t)|² dt = A²/2

2. Bandpass Filter and Unity Energy Normalization

A bandpass filter with a constant gain H(f) over the passband ensures power normalization by scaling the gain such that:

f₁f₂ |H(f)|² df = 1

For a filter with bandwidth B = f₂ - f₁, the gain is:

|H(f)|² = 1/B

The filter scales the signal by 1/√B to normalize the power.

3. Effect on Signal Amplitude

After filtering, the power of the filtered signal is the same as the original, but the amplitude is reduced. For sinusoidal signals:

Py = Px = A²/2

The amplitude of the filtered signal Ay is scaled as:

Ay = A × √(1/B)

4. Example: Amplitude Halving

Consider a sinusoidal signal:

x(t) = cos(2Ï€ × 1000t)

If the filter has a bandwidth B = 2, the amplitude of the filtered signal becomes:

Ay = A × 1/√2 ≈ 0.707A

Thus, the amplitude is reduced by approximately 29.3%.

If filter bandwidth B = 4, then the amplitude of the filtered signal reduces to 50%, and so on.


5. Why This Happens

Real-world filters are designed to prioritize power preservation rather than amplitude. This normalization ensures the filter does not artificially boost or reduce the signal's power. 

 

Read also about 

[1] MATLAB Code for understanding +/- 3 dB Frequency Response of a Bandpass Filter

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Star to Delta Conversion and Vice Versa | star delta conversion

The transformation of a star to a delta and a delta to a star circuit is a hot topic in electrical science and engineering. Examiners often ask about the conversion of star to delta and delta to star circuit diagram. When solving complex circuits, the conversion procedure can sometimes ease calculations and save time. Without further ado, we'll go over the characteristics of both a star and a delta circuit. As its title suggests, the star circuit looks like a star. Delta circuit, on the other hand, looks like a delta. Now we'll look at the mathematical method for converting delta to star and star to delta. Delta to Star R1 = RaRb / (Ra + Rb + Rc) R2 = RbRc / (Ra + Rb + Rc) R3 = RaRc / (Ra + Rb + Rc) Use star to delta online converter and vice versa Star to Delta Ra = (R1R2 + R2R3 + R3R1) / R2 Rb = (R1R2 + R2R3 + R3R1) / R3 Rc = (R1R2 + R2R3 + R3R1) / R1 Next Page>>

MIMO, massive MIMO, and Beamforming

  The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via  beamforming  or directional transmission. 1. Some essential characteristics of a MIMO system 1.1. Spatial Division Multiplexing Access (SDMA) SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter. 1.2. Spatial Multiplexing Another essential ...

MATLAB Code for Rank and Condition Number of a Channel Matrix

To assess the signal strengths of various multipaths between TX and RX and enable communication, the rank and condition numbers of a channel matrix are highly helpful characteristics. Signal multipath propagation is a typical occurrence in wireless communication. Phases shift and the signal weakens during this process. We are discussing signal phases in this context. When numerous multipaths arrive at the receiver, the resulting signal may be additive or destructive because of phase alterations. A channel matrix is referred to as a sparse matrix if it only has a few stronger elements and the majority of the other elements are zero. Finding rank and condition number for sparse matrices is important for numerous reasons. That topic has already been covered in another article [ click here ]. We will just talk about the corresponding MATLAB codes here. MATLAB Code for Rank and Condition Number of a Channel Matrix %Author: Salim Wireless For study materials on wireless %com...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. clc;clear all;...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Why do we require modulation in wireless communication?

Modulation : Why do we require modulation in wireless communication? Wireless communication relies heavily on modulation techniques. Coaxial cable, twisted pair, and other types of wired communication are commonly used. Wired communication, on the other hand, is best for short-distance communication. An antenna is required for wireless communication to transfer signals. Now, if we want to send a baseband signal, we'll need a very large antenna with a range of many kilometers. Baseband signals are ones that typically contain a low or medium frequency message signal. It's also known as a message signal without modulation. Modulation is a technique for increasing the frequency of a message signal by the carrier frequency to a significantly higher frequency. So, now I'll explain why modulation is necessary. The main two goals of modulation techniques are to reduce antenna height and to multiplex data (Multiplexing). Reducing the height of antenna: For short-range baseband commu...