3. AoA & AoD detection:
Small-scale fading refers to rapid changes in the received signal caused by factors such as angle of arrival and departure (AOA and AOD), multipath, doppler frequency shift, and so on. UWB can also be used to calculate the angle of arrival and departure for a device. This also provides an additional benefit in terms of improving communication. It determines the AoA and AoD by detecting the phase difference between preceding and succeeding antenna elements in the received signal.
How much power does UWB use:
It adopts a pulse method that involves a huge spectrum as compared to other protocols. There are numerous advantages to employing an ultra-wideband. It uses less energy. We broadcast a narrow pulse, like in UWB band communication, with a duty cycle of roughly 1%. So, we do require not much power for such short-range communication. Just for simplicity, consider OFF-ON keying, in which we send bit '1' by simply dedicating some energy to it. We also send bit '0' by switching off the circuits. A similar situation occurs in this case. The pulse signal has a periodic cycle in this case. We assign power to a very small portion of that periodic cycle or period compared to the entire periodic time; the rest of the time, we send no power. However, because we use it for short-range communication, it easily overcomes the noise level.
Small-scale fading refers to rapid changes in the received signal caused by factors such as angle of arrival and departure (AOA and AOD), multipath, doppler frequency shift, and so on. UWB can also be used to calculate the angle of arrival and departure for a device. This also provides an additional benefit in terms of improving communication. It determines the AoA and AoD by detecting the phase difference between preceding and succeeding antenna elements in the received signal.
How much power does UWB use:
It adopts a pulse method that involves a huge spectrum as compared to other protocols. There are numerous advantages to employing an ultra-wideband. It uses less energy. We broadcast a narrow pulse, like in UWB band communication, with a duty cycle of roughly 1%. So, we do require not much power for such short-range communication. Just for simplicity, consider OFF-ON keying, in which we send bit '1' by simply dedicating some energy to it. We also send bit '0' by switching off the circuits. A similar situation occurs in this case. The pulse signal has a periodic cycle in this case. We assign power to a very small portion of that periodic cycle or period compared to the entire periodic time; the rest of the time, we send no power. However, because we use it for short-range communication, it easily overcomes the noise level.
Because UWB runs at such a high frequency, multiple reflections and refraction are a distinct possibility. As a result, the Saleh Valenzuala model is widely used in such bands. It's a clustered channel model built on the amplitude and time delay models. Because we keep the duty cycle of UWB low and assign less power, multi-paths or MPCs don't interact as much due to reflection or refraction. Because it is designed for short-range communication, it quickly overcomes noise even while transferring less power.
UWB positioning range:
UWB's range is less than half that of Wi-Fi's. Probably 50 meters. However, in practice, the location accuracy of UWB-enabled sensors and devices is less than 50 centimeters.
Applications:
Ultra-wideband (UWB) is used in various WSNs (wireless sensor networks), sensors (motion sensor, temperature sensor, light sensor, etc.), Real-time location detectors, AirTag, RFID, Digital Key, Signaling, Large data transfers, Radar, etc.
This frequency band was used in IEEE 802.15.4a standard and WPANs.
Limitations of UWB:
Short-range communication protocol
It doesn't technically use a carrier signal. Consequently, receiver signal processing may sometimes take time.
Also Read:
[1] MATLAB code for UWB modulation