Skip to main content

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM


 

One of the best-performing modulation techniques is QAM [↗]. Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗]. In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency.


MATLAB Script (for 4-QAM)

% This code is written by SalimWirelss.Com
% This is an example of 4-QAM. Here constellation size is 4
% or total number of symbols/signals is 4
% We need 2 bits once to represent four constellation points
% QAM modulation is the combination of Amplitude modulation plus
% Phase Modulation. We map the decimal value of the input symbols, i.e.,
% 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively.


clc;clear all;close all;

M = 4; % Number of levels after quantization / size of signal constellation

k = log2(M); % Number of bits per symbol

rng(10) %assaining the value of seed integer

N =10000; % Number of bits to process

InputBits = randi([0 1],1,N); % Generating randon bits

InputSymbol_matrix = reshape(InputBits,length(InputBits)/k,k); % Reshape data into binary k-tuples, k = log2(M)

InputSymbols_decimal = bi2de(InputSymbol_matrix); % Convert binary to decimal

for n= 1:N/k

if InputSymbols_decimal(n)==0

QAM(n)= complex(1,1);

elseif InputSymbols_decimal(n)==1

QAM(n)= complex(-1,1);

elseif InputSymbols_decimal(n)==2

QAM(n)= complex(1,-1);

else

QAM(n)= complex(-1,-1);

end



end



%Transmission of 4QAM data over AWGN channel

snrdB = 10;

Y=awgn(QAM,snrdB); %received signal


%Threshold Detection

for n= 1:N/k

if (real(Y(n))>0 && imag(Y(n))>0)

Z(n)=complex(1,1);

elseif (real(Y(n))>0 && imag(Y(n))<0)

Z(n)=complex(1,-1);


elseif (real(Y(n))<0 && imag(Y(n))>0)

Z(n)=complex(-1,1);

else

Z(n)=complex(-1,-1);

end

end

figure(1)
scatter(real(QAM), imag(QAM))
xlim([-3, 3]);
ylim([-3, 3]);
legend('Transmitted Symbols')

figure(2)
scatter(real(Y), imag(Y))
xlim([-3, 3]);
ylim([-3, 3]);
legend('Received Symbols')
 

Output 

 
 
Fig 1: Constellation points of 4-QAM (Transmitted)


 
Fig 2: Constellation points of 4-QAM (Received)


Copy the MATLAB Code for 4-QAM


 

Another MATLAB Code (for 16-QAM)

%The code is developed by SalimWireless.Com

clc;
clear;
close all;

% Define parameters
M = 16; % Modulation order for 16-QAM
numSymbols = 10000; % Number of symbols to modulate

% Generate random data
data = randi([0 M-1], numSymbols, 1); % Ensure data is a column vector

% Modulate the data using 16-QAM
modData = qammod_custom(data, M);

snrdB = 15;
Y = awgn(modData,snrdB); %received signal

% Plot the constellation of the modulated signal
figure;
subplot(2,1,1);
scatter(real(modData), imag(modData), 'o');
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Constellation Diagram of Modulated Signal (16-QAM)');
axis([-1.5 1.5 -1.5 1.5]); % Set axis limits for better visualization

subplot(2,1,2);
scatter(real(Y), imag(Y), 'o');
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Constellation Diagram of Noisy Received Signal before demodulation');
axis([-1.5 1.5 -1.5 1.5]); % Set axis limits for better visualization

% Demodulate the received signal
receivedData = qamdemod_custom(modData, M);

% Ensure receivedData is a column vector for comparison
receivedData = receivedData(:);


% Custom 16-QAM Modulation Function
function modData = qammod_custom(data, M)
% QAMMOD_CUSTOM Modulate data using 16-QAM
% data - Column vector of integers (each element is between 0 and M-1)
% M - Modulation order (should be 16 for 16-QAM)

% Check if M is 16
if M ~= 16
error('This function is designed for 16-QAM modulation.');
end

% Define the 16-QAM constellation
constellation = [-3-3i, -3-1i, -1-3i, -1-1i, ...
-3+3i, -3+1i, -1+3i, -1+1i, ...
+3-3i, +3-1i, +1-3i, +1-1i, ...
+3+3i, +3+1i, +1+3i, +1+1i];

% Normalize constellation
constellation = constellation / sqrt(mean(abs(constellation).^2)); % Scale to unit average power

% Map data to constellation points
modData = constellation(data + 1);
end

% Custom 16-QAM Demodulation Function
function demodData = qamdemod_custom(modData, M)
% QAMDEMOD_CUSTOM Demodulate data using 16-QAM
% modData - Column vector of complex numbers (modulated symbols)
% M - Modulation order (should be 16 for 16-QAM)

% Check if M is 16
if M ~= 16
error('This function is designed for 16-QAM demodulation.');
end

% Define the 16-QAM constellation
constellation = [-3-3i, -3-1i, -1-3i, -1-1i, ...
-3+3i, -3+1i, -1+3i, -1+1i, ...
+3-3i, +3-1i, +1-3i, +1-1i, ...
+3+3i, +3+1i, +1+3i, +1+1i];

% Normalize constellation
constellation = constellation / sqrt(mean(abs(constellation).^2)); % Scale to unit average power

% Ensure modData is a column vector
modData = modData(:);

% Compute the distances from each modData point to all constellation points
numSymbols = length(modData);
numConstellations = length(constellation);
distances = zeros(numSymbols, numConstellations);
for k = 1:numConstellations
distances(:, k) = abs(modData - constellation(k)).^2;
end

% Find the closest constellation point for each modData point
[~, demodData] = min(distances, [], 2);

% Convert to zero-based index
demodData = demodData - 1;
end

Output  


 
 
 
 

Copy the MATLAB Code above from here (for 16-QAM)

 

MATLAB code for M-ary QAM (e.g., 4, 8, 16, 32, 64, 128, 256)

%The code is developed by SalimWireless.com
% M-ary QAM Modulation and Demodulation
clc;
clear;
close all;


% Parameters
M = 32; % Order of QAM (M-QAM)
N = 1000; % Number of symbols
SNR = 10; % Signal-to-Noise Ratio in dB


% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);


% Modulate using M-QAM
txSignal = qammod(dataSymbols, M);


% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');


% Demodulate
demodulatedSymbols = qamdemod(rxSignal, M);


% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;


% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);


% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');


subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output








Copy the MATLAB Code above from here (e.g., for QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM.)


MATLAB Code for BER vs SNR for 4-QAM, 16-QAM, 32-QAM, and so on

 
 


 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, 256-QAM)

 

 
 
Also read about

Next>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...