Skip to main content

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM


 

One of the best-performing modulation techniques is QAM [↗]. Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗]. In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency.


MATLAB Script (for 4-QAM)

% This code is written by SalimWirelss.Com
% This is an example of 4-QAM. Here constellation size is 4
% or total number of symbols/signals is 4
% We need 2 bits once to represent four constellation points
% QAM modulation is the combination of Amplitude modulation plus
% Phase Modulation. We map the decimal value of the input symbols, i.e.,
% 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively.


clc;clear all;close all;

M = 4; % Number of levels after quantization / size of signal constellation

k = log2(M); % Number of bits per symbol

rng(10) %assaining the value of seed integer

N =10000; % Number of bits to process

InputBits = randi([0 1],1,N); % Generating randon bits

InputSymbol_matrix = reshape(InputBits,length(InputBits)/k,k); % Reshape data into binary k-tuples, k = log2(M)

InputSymbols_decimal = bi2de(InputSymbol_matrix); % Convert binary to decimal

for n= 1:N/k

if InputSymbols_decimal(n)==0

QAM(n)= complex(1,1);

elseif InputSymbols_decimal(n)==1

QAM(n)= complex(-1,1);

elseif InputSymbols_decimal(n)==2

QAM(n)= complex(1,-1);

else

QAM(n)= complex(-1,-1);

end



end



%Transmission of 4QAM data over AWGN channel

snrdB = 10;

Y=awgn(QAM,snrdB); %received signal


%Threshold Detection

for n= 1:N/k

if (real(Y(n))>0 && imag(Y(n))>0)

Z(n)=complex(1,1);

elseif (real(Y(n))>0 && imag(Y(n))<0)

Z(n)=complex(1,-1);


elseif (real(Y(n))<0 && imag(Y(n))>0)

Z(n)=complex(-1,1);

else

Z(n)=complex(-1,-1);

end

end

figure(1)
scatter(real(QAM), imag(QAM))
xlim([-3, 3]);
ylim([-3, 3]);
legend('Transmitted Symbols')

figure(2)
scatter(real(Y), imag(Y))
xlim([-3, 3]);
ylim([-3, 3]);
legend('Received Symbols')
 

Output 

 
 
Fig 1: Constellation points of 4-QAM (Transmitted)


 
Fig 2: Constellation points of 4-QAM (Received)


Copy the MATLAB Code for 4-QAM


 

Another MATLAB Code (for 16-QAM)

%The code is developed by SalimWireless.Com

clc;
clear;
close all;

% Define parameters
M = 16; % Modulation order for 16-QAM
numSymbols = 10000; % Number of symbols to modulate

% Generate random data
data = randi([0 M-1], numSymbols, 1); % Ensure data is a column vector

% Modulate the data using 16-QAM
modData = qammod_custom(data, M);

snrdB = 15;
Y = awgn(modData,snrdB); %received signal

% Plot the constellation of the modulated signal
figure;
subplot(2,1,1);
scatter(real(modData), imag(modData), 'o');
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Constellation Diagram of Modulated Signal (16-QAM)');
axis([-1.5 1.5 -1.5 1.5]); % Set axis limits for better visualization

subplot(2,1,2);
scatter(real(Y), imag(Y), 'o');
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Constellation Diagram of Noisy Received Signal before demodulation');
axis([-1.5 1.5 -1.5 1.5]); % Set axis limits for better visualization

% Demodulate the received signal
receivedData = qamdemod_custom(modData, M);

% Ensure receivedData is a column vector for comparison
receivedData = receivedData(:);


% Custom 16-QAM Modulation Function
function modData = qammod_custom(data, M)
% QAMMOD_CUSTOM Modulate data using 16-QAM
% data - Column vector of integers (each element is between 0 and M-1)
% M - Modulation order (should be 16 for 16-QAM)

% Check if M is 16
if M ~= 16
error('This function is designed for 16-QAM modulation.');
end

% Define the 16-QAM constellation
constellation = [-3-3i, -3-1i, -1-3i, -1-1i, ...
-3+3i, -3+1i, -1+3i, -1+1i, ...
+3-3i, +3-1i, +1-3i, +1-1i, ...
+3+3i, +3+1i, +1+3i, +1+1i];

% Normalize constellation
constellation = constellation / sqrt(mean(abs(constellation).^2)); % Scale to unit average power

% Map data to constellation points
modData = constellation(data + 1);
end

% Custom 16-QAM Demodulation Function
function demodData = qamdemod_custom(modData, M)
% QAMDEMOD_CUSTOM Demodulate data using 16-QAM
% modData - Column vector of complex numbers (modulated symbols)
% M - Modulation order (should be 16 for 16-QAM)

% Check if M is 16
if M ~= 16
error('This function is designed for 16-QAM demodulation.');
end

% Define the 16-QAM constellation
constellation = [-3-3i, -3-1i, -1-3i, -1-1i, ...
-3+3i, -3+1i, -1+3i, -1+1i, ...
+3-3i, +3-1i, +1-3i, +1-1i, ...
+3+3i, +3+1i, +1+3i, +1+1i];

% Normalize constellation
constellation = constellation / sqrt(mean(abs(constellation).^2)); % Scale to unit average power

% Ensure modData is a column vector
modData = modData(:);

% Compute the distances from each modData point to all constellation points
numSymbols = length(modData);
numConstellations = length(constellation);
distances = zeros(numSymbols, numConstellations);
for k = 1:numConstellations
distances(:, k) = abs(modData - constellation(k)).^2;
end

% Find the closest constellation point for each modData point
[~, demodData] = min(distances, [], 2);

% Convert to zero-based index
demodData = demodData - 1;
end

Output  


 
 
 
 

Copy the MATLAB Code above from here (for 16-QAM)

 

MATLAB code for M-ary QAM (e.g., 4, 8, 16, 32, 64, 128, 256)

%The code is developed by SalimWireless.com
% M-ary QAM Modulation and Demodulation
clc;
clear;
close all;


% Parameters
M = 32; % Order of QAM (M-QAM)
N = 1000; % Number of symbols
SNR = 10; % Signal-to-Noise Ratio in dB


% Generate random data symbols
dataSymbols = randi([0 M-1], N, 1);


% Modulate using M-QAM
txSignal = qammod(dataSymbols, M);


% Add AWGN noise
rxSignal = awgn(txSignal, SNR, 'measured');


% Demodulate
demodulatedSymbols = qamdemod(rxSignal, M);


% Calculate symbol error rate
symbolErrors = sum(dataSymbols ~= demodulatedSymbols);
SER = symbolErrors / N;


% Display results
disp(['Symbol Error Rate (SER): ', num2str(SER)]);


% Plot constellation diagrams
figure;
subplot(2, 1, 1);
plot(real(txSignal), imag(txSignal), 'o');
grid on;
title('Transmitted Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');


subplot(2, 1, 2);
plot(real(rxSignal), imag(rxSignal), 'o');
grid on;
title('Received Signal Constellation');
xlabel('In-Phase');
ylabel('Quadrature');

Output








Copy the MATLAB Code above from here (e.g., for QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM.)


MATLAB Code for BER vs SNR for 4-QAM, 16-QAM, 32-QAM, and so on

 
 


 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, 256-QAM)

 

 
 
Also read about

Next>>

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ï€)) ∫â‚“∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...