Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Difference between AWGN and Rayleigh Fading



1. Introduction

Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗], are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. 



Fig: Rayleigh Fading due to multi-paths

Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading.

y = h*x + n ... (i)

Symbol '*' represents convolution.

The transmitted signal x is multiplied by the channel coefficient or channel impulse response (h) in the equation above, and the symbol "n" stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading.


2. Additive White Gaussian Noise (AWGN)

The mathematical effect involves adding Gaussian-distributed noise to the modulated signal. The received signal y(t) is given by:

y(t) = x(t) + n(t)

Where:
x(t) is the modulated signal.
n(t) is the AWGN.

The effect of AWGN is to add random variations to the amplitude of the signal, which can lead to erroneous detection of the transmitted symbols. The SNR (signal-to-noise ratio) plays a crucial role in determining the quality of demodulation, with higher SNR values leading to better performance.

We measure SNR at the receiver side due to AWGN for a variety of reasons. For additional information about the Gaussian Noise and its PDF, click here. Because the power spectrum density of this type of noise is frequency independent, the term "white Gaussian noise" has been used here.


3. Rayleigh Fading

Mathematically, Rayleigh fading can be represented as a complex Gaussian random variable with zero mean and a certain variance. The received signal y(t) in the presence of Rayleigh fading can be represented as:

y(t) = h * x(t) + n(t)

Where:

This symbol '*' represents convolution

h is the complex fading coefficient, representing the channel gain and phase shift.

x(t) is the modulated signal.

n(t) is the noise.

The fading coefficient h introduces random amplitude and phase variations to the signal. Due to the randomness of h, the received signal's amplitude will experience fluctuations, impacting the detection of transmitted symbols. The actual fading distribution might vary depending on the specific channel characteristics.


We will now talk about Rayleigh fading. We'll start by talking about what fading actually is. Any sort of wireless communication uses many paths (LOS or NLOS) [↗] to carry the signal from the transmitter to the receiver. To learn more about multi-paths (MPCs) in wireless communication, click here [↗]. Due to various reflections or diffractions from building walls, vegetation, etc., as they pass through multi-paths, the resulting signal at the receiver may be additive or destructive. Diversity, which is achieved by multi-antenna transmission and reception, is the best method to deal with this scenario. The topic " Diversity" will be covered in a later article.

The Rayleigh fading coefficient, or h in equation (i) above, is a complex coefficient that depends on the signal's attenuation and delay spread.

The Rayleigh distribution describes how the amplitudes of channel coefficients vary over a range. If the amplitude of the channel coefficient, a = |h|, then the distribution of the channel coefficient,

fA(a) = 2ae-a^2,  a>=0

On the other hand, the phases of the fading channel coefficient are distributed over the range of 0 degrees to 2П (or, 2*pi).

 

MATLAB Code to demonstrate the effects of AWGN and Rayleigh fading on wireless communication channels

 

 Output

 

 
Fig 1: Effects of AWGN and Rayleigh Fading in Wireless Communication
 
 

Equalizer to reduce Rayleigh Fading or Multi-path Effects

 







MATLAB Code to overcome the effect of the Rayleigh Fading with Receiver Diversity Gain

 

Output

 
 
Fig 2: BER vs SNR for Equal Gain Combining (EGC)


Q. Why does Rayleigh fading occur?
A. Due to multi-path

Q. Which kind of fading is Rayleigh fading, exactly?

A. Small-scale fading

Q. What other type of fading is there?

A. Large-scale fading

Q. When deep fade occurs?

You can notice a sudden drop in signal power while performing a signal analysis or spectrum analysis. If the signals that reach the receiver are fully destructive, as we have already discussed, this phenomenon is known as "deep fading." Such a condition may also arise as a result of signal shadowing, etc. [Read More about Fading: Slow & Fast Fading and Large & Small Scale Fading, etc.]

 

Further Reading 


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. clc;clear all;...

Star to Delta Conversion and Vice Versa | star delta conversion

The transformation of a star to a delta and a delta to a star circuit is a hot topic in electrical science and engineering. Examiners often ask about the conversion of star to delta and delta to star circuit diagram. When solving complex circuits, the conversion procedure can sometimes ease calculations and save time. Without further ado, we'll go over the characteristics of both a star and a delta circuit. As its title suggests, the star circuit looks like a star. Delta circuit, on the other hand, looks like a delta. Now we'll look at the mathematical method for converting delta to star and star to delta. Delta to Star R1 = RaRb / (Ra + Rb + Rc) R2 = RbRc / (Ra + Rb + Rc) R3 = RaRc / (Ra + Rb + Rc) Use star to delta online converter and vice versa Star to Delta Ra = (R1R2 + R2R3 + R3R1) / R2 Rb = (R1R2 + R2R3 + R3R1) / R3 Rc = (R1R2 + R2R3 + R3R1) / R1 Next Page>>

MIMO, massive MIMO, and Beamforming

  The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via  beamforming  or directional transmission. 1. Some essential characteristics of a MIMO system 1.1. Spatial Division Multiplexing Access (SDMA) SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter. 1.2. Spatial Multiplexing Another essential ...

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation

   Pulse Width Modulation (PWM) MATLAB Script   clc; clear all; close all; fs=5; %frequency of the sawtooth signal fm=5; %frequency of the message signal sampling_frequency = 10e3; a=0.5; % amplitide t=0:(1/sampling_frequency):1; %sampling rate of 10kHz sawtooth=1.01*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave subplot(4,1,1); plot(t,sawtooth); % plotting the sawtooth wave title('Comparator Wave'); msg=a.*sin(2*pi*fm*t); %generating message wave subplot(4,1,2); plot(t,msg); %plotting the sine message wave title('Message Signal'); for i=1:length(sawtooth) if (msg(i)>=sawtooth(i)) pwm(i)=1; %is message signal amplitude at i th sample is greater than %sawtooth wave amplitude at i th sample else pwm(i)=0; end end subplot(4,1,3); plot(t,pwm,'r'); title('PWM'); axis([0 1 0 1.1]); %to keep the pwm visible during plotting. %% Demodulation % Demodulation: Measure the pulse width to reconstruct the signal demodulated_signal = zeros(size(msg)); for i =...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MATLAB Code for Rank and Condition Number of a Channel Matrix

To assess the signal strengths of various multipaths between TX and RX and enable communication, the rank and condition numbers of a channel matrix are highly helpful characteristics. Signal multipath propagation is a typical occurrence in wireless communication. Phases shift and the signal weakens during this process. We are discussing signal phases in this context. When numerous multipaths arrive at the receiver, the resulting signal may be additive or destructive because of phase alterations. A channel matrix is referred to as a sparse matrix if it only has a few stronger elements and the majority of the other elements are zero. Finding rank and condition number for sparse matrices is important for numerous reasons. That topic has already been covered in another article [ click here ]. We will just talk about the corresponding MATLAB codes here. MATLAB Code for Rank and Condition Number of a Channel Matrix %Author: Salim Wireless For study materials on wireless %com...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...