Skip to main content

Difference between AWGN and Rayleigh Fading



1. Introduction

Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels, are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. 



Fig: Rayleigh Fading due to multi-paths

Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading.

y = h*x + n ... (i)

Symbol '*' represents convolution.

The transmitted signal x is multiplied by the channel coefficient or channel impulse response (h) in the equation above, and the symbol "n" stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading.


2. Additive White Gaussian Noise (AWGN)

The mathematical effect involves adding Gaussian-distributed noise to the modulated signal. The received signal y(t) is given by:

y(t) = x(t) + n(t)

Where:
x(t) is the modulated signal.
n(t) is the AWGN.

The effect of AWGN is to add random variations to the amplitude of the signal, which can lead to erroneous detection of the transmitted symbols. The SNR (signal-to-noise ratio) plays a crucial role in determining the quality of demodulation, with higher SNR values leading to better performance.

We measure SNR at the receiver side due to AWGN for a variety of reasons (Signal-to-Noise Ratio (SNR) Explained). For additional information about the Gaussian Noise and its PDF, click here to learn about Gaussian PDF in Wireless. Because the power spectrum density of this type of noise is frequency independent, the term "white Gaussian noise" has been used here.


3. Rayleigh Fading

Mathematically, Rayleigh fading can be represented as a complex Gaussian random variable with zero mean and a certain variance. The received signal y(t) in the presence of Rayleigh fading can be represented as:

y(t) = h * x(t) + n(t)

Where:

This symbol '*' represents convolution

h is the complex fading coefficient, representing the channel gain and phase shift.

x(t) is the modulated signal.

n(t) is the noise.

The fading coefficient h introduces random amplitude and phase variations to the signal. Due to the randomness of h, the received signal's amplitude will experience fluctuations, impacting the detection of transmitted symbols. The actual fading distribution might vary depending on the specific channel characteristics.


We will now talk about Rayleigh fading. We'll start by talking about what fading actually is. Any sort of wireless communication uses many paths Line-of-Sight (LOS) vs Non-Line-of-Sight (NLOS) Propagation to carry the signal from the transmitter to the receiver. To learn more about multi-paths (MPCs) in wireless communication, click here [↗]. Due to various reflections or diffractions from building walls, vegetation, etc., as they pass through multi-paths, the resulting signal at the receiver may be additive or destructive. Diversity, which is achieved by multi-antenna transmission and reception, is the best method to deal with this scenario. The topic " Diversity" will be covered in a later article.

The Rayleigh fading coefficient, or h in equation (i) above, is a complex coefficient that depends on the signal's attenuation and delay spread.

The Rayleigh distribution describes how the amplitudes of channel coefficients vary over a range. If the amplitude of the channel coefficient, a = |h|, then the distribution of the channel coefficient,

fA(a) = 2ae-a^2,  a>=0

On the other hand, the phases of the fading channel coefficient are distributed over the range of 0 degrees to 2П (or, 2*pi).


Simulator for the Effect of AWGN and Rayleigh Fading on a BPSK Signal

This simulation below represents a standard wireless communication system featuring 4 multipath components, each separated by 1 millisecond, and employing BPSK modulation at a data rate of 100 bps














MATLAB Code to demonstrate the effects of AWGN and Rayleigh fading on wireless communication channels

 

 Output

 

 
Fig 1: Effects of AWGN and Rayleigh Fading in Wireless Communication
 
 

Equalizer to reduce Rayleigh Fading or Multi-path Effects

 







MATLAB Code to overcome the effect of the Rayleigh Fading with Receiver Diversity Gain

 

Output

 
 
Fig 2: BER vs SNR for Equal Gain Combining (EGC)





Q. Why does Rayleigh fading occur?
A. Due to multi-path

Q. Which kind of fading is Rayleigh fading, exactly?

A. Small-scale fading

Q. What other type of fading is there?

A. Large-scale fading

Q. When deep fade occurs?

You can notice a sudden drop in signal power while performing a signal analysis or spectrum analysis. If the signals that reach the receiver are fully destructive, as we have already discussed, this phenomenon is known as "deep fading." Such a condition may also arise as a result of signal shadowing, etc. [Read More about Fading: Slow & Fast Fading and Large & Small Scale Fading, etc.]

 

Further Reading 


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Online Channel Impulse Response Simulator

  Fundamental Theory of Channel Impulse Response The fundamental theory behind the channel impulse response in wireless communication often involves complex exponential components such as: \( h(t) = \sum_{i=1}^{L} a_i \cdot \delta(t - \tau_i) \cdot e^{j\theta_i} \) Where: \( a_i \) is the amplitude of the \( i^{th} \) path \( \tau_i \) is the delay of the \( i^{th} \) path \( \theta_i \) is the phase shift (often due to Doppler effect, reflection, etc.) \( e^{j\theta_i} \) introduces a phase rotation (complex exponential) The convolution \( x(t) * h(t) \) gives the received signal So, instead of representing the channel with only real-valued amplitudes, each path can be more accurately modeled using a complex gain : \( h[n] = a_i \cdot e^{j\theta_i} \) 1. Simple Channel Impulse Response Simulator  (Here you can input only a unit impulse signal) Input Signal (Unit Impu...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...