Skip to main content

Difference between AWGN and Rayleigh Fading



1. Introduction

Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗], are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. 



Fig: Rayleigh Fading due to multi-paths

Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading.

y = h*x + n ... (i)

Symbol '*' represents convolution.

The transmitted signal x is multiplied by the channel coefficient or channel impulse response (h) in the equation above, and the symbol "n" stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading.


2. Additive White Gaussian Noise (AWGN)

The mathematical effect involves adding Gaussian-distributed noise to the modulated signal. The received signal y(t) is given by:

y(t) = x(t) + n(t)

Where:
x(t) is the modulated signal.
n(t) is the AWGN.

The effect of AWGN is to add random variations to the amplitude of the signal, which can lead to erroneous detection of the transmitted symbols. The SNR (signal-to-noise ratio) plays a crucial role in determining the quality of demodulation, with higher SNR values leading to better performance.

We measure SNR at the receiver side due to AWGN for a variety of reasons. For additional information about the Gaussian Noise and its PDF, click here. Because the power spectrum density of this type of noise is frequency independent, the term "white Gaussian noise" has been used here.


3. Rayleigh Fading

Mathematically, Rayleigh fading can be represented as a complex Gaussian random variable with zero mean and a certain variance. The received signal y(t) in the presence of Rayleigh fading can be represented as:

y(t) = h * x(t) + n(t)

Where:

This symbol '*' represents convolution

h is the complex fading coefficient, representing the channel gain and phase shift.

x(t) is the modulated signal.

n(t) is the noise.

The fading coefficient h introduces random amplitude and phase variations to the signal. Due to the randomness of h, the received signal's amplitude will experience fluctuations, impacting the detection of transmitted symbols. The actual fading distribution might vary depending on the specific channel characteristics.


We will now talk about Rayleigh fading. We'll start by talking about what fading actually is. Any sort of wireless communication uses many paths (LOS or NLOS) [↗] to carry the signal from the transmitter to the receiver. To learn more about multi-paths (MPCs) in wireless communication, click here [↗]. Due to various reflections or diffractions from building walls, vegetation, etc., as they pass through multi-paths, the resulting signal at the receiver may be additive or destructive. Diversity, which is achieved by multi-antenna transmission and reception, is the best method to deal with this scenario. The topic " Diversity" will be covered in a later article.

The Rayleigh fading coefficient, or h in equation (i) above, is a complex coefficient that depends on the signal's attenuation and delay spread.

The Rayleigh distribution describes how the amplitudes of channel coefficients vary over a range. If the amplitude of the channel coefficient, a = |h|, then the distribution of the channel coefficient,

fA(a) = 2ae-a^2,  a>=0

On the other hand, the phases of the fading channel coefficient are distributed over the range of 0 degrees to 2П (or, 2*pi).


Simulator for the Effect of AWGN and Rayleigh Fading on a BPSK Signal

This simulation below represents a standard wireless communication system featuring 4 multipath components, each separated by 1 millisecond, and employing BPSK modulation at a data rate of 100 bps














MATLAB Code to demonstrate the effects of AWGN and Rayleigh fading on wireless communication channels

 

 Output

 

 
Fig 1: Effects of AWGN and Rayleigh Fading in Wireless Communication
 
 

Equalizer to reduce Rayleigh Fading or Multi-path Effects

 







MATLAB Code to overcome the effect of the Rayleigh Fading with Receiver Diversity Gain

 

Output

 
 
Fig 2: BER vs SNR for Equal Gain Combining (EGC)





Q. Why does Rayleigh fading occur?
A. Due to multi-path

Q. Which kind of fading is Rayleigh fading, exactly?

A. Small-scale fading

Q. What other type of fading is there?

A. Large-scale fading

Q. When deep fade occurs?

You can notice a sudden drop in signal power while performing a signal analysis or spectrum analysis. If the signals that reach the receiver are fully destructive, as we have already discussed, this phenomenon is known as "deep fading." Such a condition may also arise as a result of signal shadowing, etc. [Read More about Fading: Slow & Fast Fading and Large & Small Scale Fading, etc.]

 

Further Reading 


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

  Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise. ASK Baseband ASK Passband        Fig 1:  Amplitude Modulation and Demodulation (Get MATLAB Code ) In Figure 1 above, you can see binary information bits are simply represented by carrier signals in the case of binary information '1'. That's why it is called baseband signal. Frequency Shift K...