Skip to main content

MIMO Channel Matrix | Rank and Condition Number


 

The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects.

When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc., (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc.

Multi-antenna communication was introduced to address this issue. It makes diversity approaches possible, greatly increasing the likelihood of the signal being received.

Let me show an example to describe the channel matrix. Assume that the TX and RX communication antennas each have two antenna elements. T1, T2, and R1, R2 are the corresponding TX and RX MIMO antennas.

The complex channel gain between T1 and R1, T1 and R2, T2 and R1, and T2 and R2 is represented by the channel matrix, H.

In a channel matrix, for example, the elements h11 and h21 each represent the complex channel gain between R1 and T1 antennas, R2 and T1 antennas, and so on.


Example of a 4 X 16 Channel Matrix:


The sample shown above is a 4 x 16 channel matrix demonstration. In this illustration, there are 16 TX antennas and 4 Rx antennas. We diagonalize the channel matrix to allow communication between T1 and R1, T2 and R2, and so on, in order to enable practical MIMO antenna communication. Interference is any signal that is received at R1 from T2, T3, and so on, etc. By diagonalizing data, it is possible to minimize signal interference between many simultaneous data streams.


What is rank of a channel matrix?

The rank of the channel matrix is evolving into a crucial wireless communication parameter as we move steadily toward MIMO and higher frequency transmission. The number of the stronger independent data streams that can travel between the TX and RX in MIMO communication is indicated by the rank of the channel matrix.

Procedure of finding rank of channel matrix in MATLAB [click here]

Python code to find rank of a matrix [click here]


What is condition number of a channel matrix:

We can determine the strength of a channel matrix's maximum singular value by comparing it to its lowest singular value using the condition number.

MATLAB code to find condition number of a channel matrix. [go]



People are good at skipping over material they already know!

View Related Topics to

MIMO Channel Matrix | Rank and Condition Number







CATEGORY LIST :

  1. Modulation
  2. Signal Processing
  3. MATLAB
  4. Beamforming
  5. 5G
  6. Channel Impulse Response
  7. Wireless
  8. ASK FSK PSK
  9. Fourier Transform
  10. MIMO - Multiple Input Multiple Output
  11. Constellation Diagrams
  12. GATE-ESE-NET
  13. Programming
  14. Telecommunication
  15. Computer Networks
  16. Filters
  17. Fourier Series and Fourier Transform
  18. BER vs SNR
  19. Millimeter wave
  20. Pulse Modulation
  21. Python
  22. Equalizers
  23. Gaussian Random Variable
  24. QAM
  25. Applications and Games
  26. Electronics Industry
  27. Frequency bands
  28. Singular Value Decomposition (SVD)
  29. Spectral density estimation
  30. Wireless Communication Q & A
  31. Channel Estimation
  32. Channel Model
  33. Convolution
  34. Image Processing
  35. IoTs
  36. UWB
  37. pskmod
  38. Antenna
  39. C Programming
  40. Projects
  41. Q & A
  42. Raised cosine filter
  43. Rayleigh Fading
  44. Transform
  45. Alamouti's Scheme
  46. Fading
  47. Microwave
  48. News about 5G
  49. OFDM
  50. PAM
  51. PCM
  52. Python Matrix Operations
  53. SSC Exam
  54. Web Design
  55. Wide Sense Stationary
  56. WordPress
  57. Ionospheric Communication
  58. JavaScript
  59. MATLAB Simulink
  60. Mobile & Accessories
  61. Signal Processing for 5G
  62. Analog Circuits
  63. Cell Towers
  64. Computer
  65. Digital Circuits
  66. Fourier Series
  67. HomePage
  68. Information and Coding Theory
  69. Laplace Transform
  70. MySQL
  71. Node.js
  72. Search
  73. ShareLinkF
  74. Statistics
  75. Z Transform

Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK s...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...