Skip to main content

MIMO Channel Matrix | Rank and Condition Number


 

The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects.

When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc., (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc.

Multi-antenna communication was introduced to address this issue. It makes diversity approaches possible, greatly increasing the likelihood of the signal being received.

Let me show an example to describe the channel matrix. Assume that the TX and RX communication antennas each have two antenna elements. T1, T2, and R1, R2 are the corresponding TX and RX MIMO antennas.

The complex channel gain between T1 and R1, T1 and R2, T2 and R1, and T2 and R2 is represented by the channel matrix, H.

In a channel matrix, for example, the elements h11 and h21 each represent the complex channel gain between R1 and T1 antennas, R2 and T1 antennas, and so on.


Example of a 4 X 16 Channel Matrix:


The sample shown above is a 4 x 16 channel matrix demonstration. In this illustration, there are 16 TX antennas and 4 Rx antennas. We diagonalize the channel matrix to allow communication between T1 and R1, T2 and R2, and so on, in order to enable practical MIMO antenna communication. Interference is any signal that is received at R1 from T2, T3, and so on, etc. By diagonalizing data, it is possible to minimize signal interference between many simultaneous data streams.


The Importance of Channel State Information (CSI)

For systems to effectively utilize the channel matrix, especially for diagonalization, the transmitter often needs to know the Channel State Information (CSI). CSI refers to the known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of scattering, fading, and power decay with distance. With accurate CSI, sophisticated signal processing techniques can be applied at the transmitter (e.g., precoding) and receiver (e.g., spatial multiplexing or beamforming) to optimize data rates and reliability. Without CSI, or with outdated CSI, the benefits of MIMO systems are significantly reduced, often limiting performance to simple diversity gains rather than the full capacity enhancements possible with spatial multiplexing.


What is rank of a channel matrix?

The rank of the channel matrix is evolving into a crucial wireless communication parameter as we move steadily toward MIMO and higher frequency transmission. The number of the stronger independent data streams that can travel between the TX and RX in MIMO communication is indicated by the rank of the channel matrix.

Implications of Channel Rank:

  • Spatial Multiplexing Capacity: The rank directly determines the maximum number of parallel data streams (or spatial multiplexing gain) that can be supported by the MIMO channel. A higher rank means more independent paths, allowing more data to be transmitted simultaneously, thus increasing data throughput.

  • Impact of Environment: In rich scattering environments (e.g., urban areas with many reflections), the channel matrix tends to have a higher rank, which is beneficial for MIMO performance. In line-of-sight (LOS) scenarios or environments with very few scatterers, the rank can be lower, limiting the spatial multiplexing gain, even with many antennas.

  • Antenna Selection: Understanding the rank helps in optimizing antenna configurations and selecting the most effective transmit and receive antenna pairs to maximize the number of usable data streams.

Procedure of finding rank of channel matrix in MATLAB [click here]

Python code to find rank of a matrix [click here]


What is condition number of a channel matrix:

We can determine the strength of a channel matrix's maximum singular value by comparing it to its lowest singular value using the condition number.

Implications of the Condition Number:

  • Channel Robustness: The condition number is a measure of the "robustness" or "well-behavedness" of the channel. A low condition number (closer to 1) indicates a well-conditioned channel where all independent data streams (eigenmodes) have similar strengths. This means the channel is stable, and small perturbations or noise won't drastically affect the received signal.

  • Sensitivity to Noise and Interference: A high condition number implies an "ill-conditioned" channel. In such a channel, some data streams are significantly weaker than others. Attempting to transmit data over these very weak streams makes the system highly susceptible to noise and interference, potentially leading to significant errors or requiring much higher transmit power for those specific streams. This also impacts the effectiveness of signal detection algorithms at the receiver.

  • Practical System Design: System designers often aim for channels with lower condition numbers to ensure stable and reliable communication. Strategies like antenna placement, adaptive modulation and coding, or even adding artificial scattering (though less common) can indirectly influence the channel's condition number to improve performance.

MATLAB code to find condition number of a channel matrix. [go]




Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ï€)) ∫â‚“∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...