Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks

Analog Beamforming vs Digital beamforming (2)


 

We can now cancel interference at the receiver's second antenna or antenna element using digital pre-coding techniques by canceling h12, h32, and so on. We can only use the singular value decomposition technique (SVD) and other operations at the digital pre-coding matrix to get h11, h22, and other data streams for independent data streams.


Similarly, in a MIMO system, we can consider the aforementioned for multi-user digital beamforming. Assume that there are N users connected to a base station (BS). So, we know that between the transmitter (here, BS) and the receivers, there will be a channel matrix (say, H) (here, users). We've already established that the received signal is designated as in the preceding paragraph.

y = √pHDs + n
Now, for multiuser MIMO, digital pre-coding matrix, D, can be expressed as,
D = [D1,D2,D3, … ,DN]

Where DN denotes the user N's digital pre-coder. We now delete the interference at user N by canceling all other users' links at user N with (Hu)DN = 0, where N u. Simply put, 'u' stands for user u, and all values of link contribution from other users at user u are set to zero during signal processing for user u. At the user u's signal processing, we only accept (Hu)Du; other terms such as HuD1, HuD2, and so on should be zero if a proper signal processing method is applied at the receiver side of user u.

Digital beam forming is a frequently used pre-coding technique for canceling interference between MIMO antennas at both the transmitter and receiver. It can also be used to cancel the interface between multi-user MIMO. In MIMO, we need a total number of RF chains equal to the entire number of antenna components for digital pre-coding. In a MIMO system, each RF is capable of providing a single data stream. This is acceptable for digital beam forming in lower dimensions. However, when it comes to huge MIMO transmission, point-to-point MIMO isn't actually scalable. However, as the number of antenna elements increases, the signal correlation at the receiver improves.


Analog vs Digital Beamforming:

Figure: Digital beamforming

In analog beamforming, a single data stream is transmitted using just one RF chain.
It is used to control the phases of the original signals.
For the largest antenna, more array gain is achievable.
SNR effective

Both the Phases and amplitudes are controlled using digital beamforming to eliminate interferences beforehand.
BS employs Nt antennas to simultaneously transmit Nr data streams to a user with Nr antennas (Nr < Nt)
Number of antennas at the receiver = Number of simultaneously available data streams
Using its Nt number of RF chains, the BS applies an Nt X Nr digital precoder D.
RF chain for each antenna element


# mimo beamforming  # analog beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Channel Estimation utilizing Decision Feedback Equalizer (DFE)

  Channel estimation using DFE is a similar process to a non-linear equalization process. In DFE (decision feed equalizer), equalization error bits/symbols between the feedforward tabs and feedback taps are calculated continuously. And equalizer's tap weights tap weights are updated correspondingly.  In plain language, the error between the received bits and known training bits is calculated, and tap weights are updated accordingly. The equalizer estimates the channel impulse response (CIR) .  Once we find the channel impulse response or channel information, we can easily retrieve the original message signal from the noisy data. In the communication process, the whole system is modeled as a linear time-invariant (LTI) system. And  y = h*x + n where, y = received signal            x = transmitted signal           n = additive white Gaussian noise [Read more about the Linear time-invariant (LTI) system and convolu...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Constellation Diagram of PSK in Detail

        Fig 1: Constellation Diagram of PSK    In the above figure, the binary bit '1' is represented by S1(t) and the binary bit '0' by S2(t), respectively. So, energy of S1(t) = (√(Eb))2 = Eb So, energy of S2(t) = (-√(Eb))2 = Eb Distance between the signaling points, d12 = 2(√(Eb))   Energy per bit for binary '1' and binary '0'           High-order PSK (e.g., 8 PSK, 16 PSK) can transmit more bits per symbol but is more sensitive to noise. Low-order PSK (e.g., BPSK, QPSK) is less susceptible to noise. PSK modulation can be visualized using a constellation diagram, where each point represents a symbol. In the presence of noise, points may be away from the original positions, making them harder to distinguish.  

Hybrid Beamforming | Page 1

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | Hybrid Beamforming: Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming. Overview of hybrid beam forming with example: Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybr...