Skip to main content

Why is SVD useful in multi-antenna communication? | Channel Matrix, U, S, V


 

svd based transmission

These days, multi-antenna transmission and reception systems are practically universal. MIMO is one of the popular types of multi-antenna systems. By enabling numerous orthogonal data streams between the transmitter and receiver (or receivers) , such antennas have the primary advantage of increasing spectral efficiency. 

A matrix can be transformed linearly with the aid of SVD. We are aware that when determining an eigenvalue, the formula Av - ฮปv = 0, is used, where v is an eigenvector with a corresponding eigenvalue of. For calculating SVD of a matrix A, firstly we compute A*AT ,then we compute A*AT - ฮปv = 0To minimize the linear operations in a matrix, eigen vectors are used to simplify the matrix equations.

However, eigenvectors need not always be linearly independent (or orthogonal). However, orthogonal data streams are necessary to boost overall throughput and decrease interference between them in order to permit multiple data streams between multi-antenna communication.

In singular value decomposition, you'll get three matrices, U, S, and V. Where U and V are orthonormal eigenvectors of  A*AT    

and S is a diagonal matrix. U*U= V*VT = I (identity matrix).

The SVD of matrix A is given by the formula:

A = USVT

Keep in mind that the singular values for matrix A will be the squareroots of the obtained eigen values as we compute the eigen values of A*AT.

The aforementioned equations make it evident that the entire received signal will appear as follows if we employ precoding matrix V at the transmitter side and post-precoding matrix UT at the receiver side.

y = U(USVT) Vx = Sx

 Where, S is a diagonal matrix, y is the signal being received, and x is the signal being sent. The multiple data streams between the transmitter and receivers are currently independent and interference-free (theoretically).

 

MATLAB Code for Singular Value Decomposition

clc;
clear;
close all;

% Define the matrix A
A = [1 2; 3 4];

% Compute the Singular Value Decomposition
[U, S, V] = svd(A);

% Display the results
disp('Matrix A:');
disp(A);

disp('Matrix U:');
disp(U);

disp('Matrix S:');
disp(S);

disp('Matrix V:');
disp(V);

% Verify the decomposition
A_reconstructed = U * S * V';
disp('Reconstructed Matrix A:');
disp(A_reconstructed);

% Compute A^T A
ATA = A' * A;
disp('Matrix A^T A:');
disp(ATA);

% Compute eigenvalues and eigenvectors of A^T A
[eigV, eigD] = eig(ATA);
disp('Eigenvalues of A^T A:');
disp(diag(eigD));
disp('Eigenvectors of A^T A:');
disp(eigV);

% Compute A A^T
AAT = A * A';
disp('Matrix A A^T:');
disp(AAT);

% Compute eigenvalues and eigenvectors of A A^T
[eigU, eigD2] = eig(AAT);
disp('Eigenvalues of A A^T:');
disp(diag(eigD2));
disp('Eigenvectors of A A^T:');
disp(eigU);

Output

Matrix A:
     1     2
     3     4

Matrix U:
   -0.4046   -0.9145
   -0.9145    0.4046

Matrix S:
    5.4650         0
         0    0.3660

Matrix V:
   -0.5760    0.8174
   -0.8174   -0.5760

Reconstructed Matrix A:
    1.0000    2.0000
    3.0000    4.0000

Matrix A^T A:
    10    14
    14    20

Eigenvalues of A^T A:
    0.1339
   29.8661

Eigenvectors of A^T A:
   -0.8174    0.5760
    0.5760    0.8174

Matrix A A^T:
     5    11
    11    25

Eigenvalues of A A^T:
    0.1339
   29.8661

Eigenvectors of A A^T:
   -0.9145    0.4046
    0.4046    0.9145

 

Copy the code from here

 
<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview of Delay Spread and Multi-path ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on RMS Delay Spread, Excess Delay ... ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Online Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes for Calculating Different Types of delay Spreads Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Baseband and Passband Implementations of ASK, FSK, and PSK ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Baseband and Passband ... ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory of Pulse Amplitude Moduation (PAM) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal ๐Ÿงฎ Simulation results for comparison of PAM, PWM, PPM, DM, and PCM ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Pulse Amplitude Modulation ... ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

๐Ÿ“˜ How Beamforming Improves SNR ๐Ÿงฎ MATLAB Code ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Beamforming in MATLAB ... MIMO / Massive MIMO Beamforming Techniques Beamforming Techniques MATLAB Codes for Beamforming... How Beamforming Improves SNR The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR)...

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...