Skip to main content

Why is SVD useful in multi-antenna communication? | Channel Matrix, U, S, V


 

svd based transmission

These days, multi-antenna transmission and reception systems are practically universal. MIMO is one of the popular types of multi-antenna systems. By enabling numerous orthogonal data streams between the transmitter and receiver (or receivers) , such antennas have the primary advantage of increasing spectral efficiency. 

A matrix can be transformed linearly with the aid of SVD. We are aware that when determining an eigenvalue, the formula Av - λv = 0, is used, where v is an eigenvector with a corresponding eigenvalue of. For calculating SVD of a matrix A, firstly we compute A*AT ,then we compute A*AT - Î»v = 0To minimize the linear operations in a matrix, eigen vectors are used to simplify the matrix equations.

However, eigenvectors need not always be linearly independent (or orthogonal). However, orthogonal data streams are necessary to boost overall throughput and decrease interference between them in order to permit multiple data streams between multi-antenna communication.

In singular value decomposition, you'll get three matrices, U, S, and V. Where U and V are orthonormal eigenvectors of  A*AT    

and S is a diagonal matrix. U*U= V*VT = I (identity matrix).

The SVD of matrix A is given by the formula:

A = USVT

Keep in mind that the singular values for matrix A will be the squareroots of the obtained eigen values as we compute the eigen values of A*AT.

The aforementioned equations make it evident that the entire received signal will appear as follows if we employ precoding matrix V at the transmitter side and post-precoding matrix UT at the receiver side.

y = U(USVT) Vx = Sx

 Where, S is a diagonal matrix, y is the signal being received, and x is the signal being sent. The multiple data streams between the transmitter and receivers are currently independent and interference-free (theoretically).

 

MATLAB Code for Singular Value Decomposition

clc;
clear;
close all;

% Define the matrix A
A = [1 2; 3 4];

% Compute the Singular Value Decomposition
[U, S, V] = svd(A);

% Display the results
disp('Matrix A:');
disp(A);

disp('Matrix U:');
disp(U);

disp('Matrix S:');
disp(S);

disp('Matrix V:');
disp(V);

% Verify the decomposition
A_reconstructed = U * S * V';
disp('Reconstructed Matrix A:');
disp(A_reconstructed);

% Compute A^T A
ATA = A' * A;
disp('Matrix A^T A:');
disp(ATA);

% Compute eigenvalues and eigenvectors of A^T A
[eigV, eigD] = eig(ATA);
disp('Eigenvalues of A^T A:');
disp(diag(eigD));
disp('Eigenvectors of A^T A:');
disp(eigV);

% Compute A A^T
AAT = A * A';
disp('Matrix A A^T:');
disp(AAT);

% Compute eigenvalues and eigenvectors of A A^T
[eigU, eigD2] = eig(AAT);
disp('Eigenvalues of A A^T:');
disp(diag(eigD2));
disp('Eigenvectors of A A^T:');
disp(eigU);

Output

Matrix A:
     1     2
     3     4

Matrix U:
   -0.4046   -0.9145
   -0.9145    0.4046

Matrix S:
    5.4650         0
         0    0.3660

Matrix V:
   -0.5760    0.8174
   -0.8174   -0.5760

Reconstructed Matrix A:
    1.0000    2.0000
    3.0000    4.0000

Matrix A^T A:
    10    14
    14    20

Eigenvalues of A^T A:
    0.1339
   29.8661

Eigenvectors of A^T A:
   -0.8174    0.5760
    0.5760    0.8174

Matrix A A^T:
     5    11
    11    25

Eigenvalues of A A^T:
    0.1339
   29.8661

Eigenvectors of A A^T:
   -0.9145    0.4046
    0.4046    0.9145

 

Copy the code from here

 
<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What is a Chirp Signal?

📘 Overview & Theory 🧮 MATLAB Code 📚 Further Reading   Chirp signals are often used to find target objects. In a chirp signal, the frequency varies with time. For up-chirp signals, frequency increases with time. Oppositely, for down-chirp signals, the frequency decreases with time. Advantages of a chirp signal over a single-toned signal Better resolution Better Security The wide bandwidth of a chirp signal allows for capturing more detailed info about the target or object In a chirp signal, pulse compression enhances resolution by concentrating the signal energy into a shorter duration of time It is less susceptible to noise  It improves signal to noise ratio Up-Chirp Signal A sinusoidal up-chirp signal is denoted as Where A is the amplitude of this signal             f0 is the starting frequency of the chirp at t=0             Î± is the chirp rate or the rate at which the frequency incre...

What are the main lobe and side lobes in Beamforming

    What are the main lobe and side lobes in Beamforming? You've probably noticed that in the diagram of  beamforming , there are two types of lobes in beamforming patterns. One is the main lobe, while the others are side lobes. We intend to communicate with receivers with a stronger directional path from the transmitter when we produce beams for wireless communication. We can also see side lobes in this scenario. These side lobes, on the other hand, are not necessary for effective communication. As a result, we take various procedures to remove those side lobes or to reduce the number of side lobes as much as feasible; otherwise, inter-symbol interference  occurs, and signal quality suffers. Figure: Illustration of Main Lobe and Side lobes, where the x-axis denotes the angle of arrival (AOA) and angle of departure (AOD), respectively, while, the y-axis denotes the gain/power in dB (decibel).     In the case of MIMO antennas, our major goal is to reduce int...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

Pulse Amplitude Modulation (PAM) & Demodulation 📘 Overview & Theory of Pulse Amplitude Modulation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation Results for Comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital Data 🧮 Other Pulse Modulation Techniques (PWM, PPM, DM, PCM) Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm = 10; % frequency of the message signal fc = 100; % frequency of the carrier signal fs = 100...