Skip to main content

Why is SVD useful in multi-antenna communication? | Channel Matrix, U, S, V


 

svd based transmission

These days, multi-antenna transmission and reception systems are practically universal. MIMO is one of the popular types of multi-antenna systems. By enabling numerous orthogonal data streams between the transmitter and receiver (or receivers) , such antennas have the primary advantage of increasing spectral efficiency. 

A matrix can be transformed linearly with the aid of SVD. We are aware that when determining an eigenvalue, the formula Av - λv = 0, is used, where v is an eigenvector with a corresponding eigenvalue of. For calculating SVD of a matrix A, firstly we compute A*AT ,then we compute A*AT - Î»v = 0To minimize the linear operations in a matrix, eigen vectors are used to simplify the matrix equations.

However, eigenvectors need not always be linearly independent (or orthogonal). However, orthogonal data streams are necessary to boost overall throughput and decrease interference between them in order to permit multiple data streams between multi-antenna communication.

In singular value decomposition, you'll get three matrices, U, S, and V. Where U and V are orthonormal eigenvectors of  A*AT    

and S is a diagonal matrix. U*U= V*VT = I (identity matrix).

The SVD of matrix A is given by the formula:

A = USVT

Keep in mind that the singular values for matrix A will be the squareroots of the obtained eigen values as we compute the eigen values of A*AT.

The aforementioned equations make it evident that the entire received signal will appear as follows if we employ precoding matrix V at the transmitter side and post-precoding matrix UT at the receiver side.

y = U(USVT) Vx = Sx

 Where, S is a diagonal matrix, y is the signal being received, and x is the signal being sent. The multiple data streams between the transmitter and receivers are currently independent and interference-free (theoretically).

 

MATLAB Code for Singular Value Decomposition

clc;
clear;
close all;

% Define the matrix A
A = [1 2; 3 4];

% Compute the Singular Value Decomposition
[U, S, V] = svd(A);

% Display the results
disp('Matrix A:');
disp(A);

disp('Matrix U:');
disp(U);

disp('Matrix S:');
disp(S);

disp('Matrix V:');
disp(V);

% Verify the decomposition
A_reconstructed = U * S * V';
disp('Reconstructed Matrix A:');
disp(A_reconstructed);

% Compute A^T A
ATA = A' * A;
disp('Matrix A^T A:');
disp(ATA);

% Compute eigenvalues and eigenvectors of A^T A
[eigV, eigD] = eig(ATA);
disp('Eigenvalues of A^T A:');
disp(diag(eigD));
disp('Eigenvectors of A^T A:');
disp(eigV);

% Compute A A^T
AAT = A * A';
disp('Matrix A A^T:');
disp(AAT);

% Compute eigenvalues and eigenvectors of A A^T
[eigU, eigD2] = eig(AAT);
disp('Eigenvalues of A A^T:');
disp(diag(eigD2));
disp('Eigenvectors of A A^T:');
disp(eigU);

Output

Matrix A:
     1     2
     3     4

Matrix U:
   -0.4046   -0.9145
   -0.9145    0.4046

Matrix S:
    5.4650         0
         0    0.3660

Matrix V:
   -0.5760    0.8174
   -0.8174   -0.5760

Reconstructed Matrix A:
    1.0000    2.0000
    3.0000    4.0000

Matrix A^T A:
    10    14
    14    20

Eigenvalues of A^T A:
    0.1339
   29.8661

Eigenvectors of A^T A:
   -0.8174    0.5760
    0.5760    0.8174

Matrix A A^T:
     5    11
    11    25

Eigenvalues of A A^T:
    0.1339
   29.8661

Eigenvectors of A A^T:
   -0.9145    0.4046
    0.4046    0.9145

 

Copy the code from here

 
<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ï€)) ∫â‚“∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...