Skip to main content

Why is SVD useful in multi-antenna communication? | Channel Matrix, U, S, V


 

svd based transmission

These days, multi-antenna transmission and reception systems are practically universal. MIMO is one of the popular types of multi-antenna systems. By enabling numerous orthogonal data streams between the transmitter and receiver (or receivers) , such antennas have the primary advantage of increasing spectral efficiency. 

A matrix can be transformed linearly with the aid of SVD. We are aware that when determining an eigenvalue, the formula Av - λv = 0, is used, where v is an eigenvector with a corresponding eigenvalue of. For calculating SVD of a matrix A, firstly we compute A*AT ,then we compute A*AT - Î»v = 0To minimize the linear operations in a matrix, eigen vectors are used to simplify the matrix equations.

However, eigenvectors need not always be linearly independent (or orthogonal). However, orthogonal data streams are necessary to boost overall throughput and decrease interference between them in order to permit multiple data streams between multi-antenna communication.

In singular value decomposition, you'll get three matrices, U, S, and V. Where U and V are orthonormal eigenvectors of  A*AT    

and S is a diagonal matrix. U*U= V*VT = I (identity matrix).

The SVD of matrix A is given by the formula:

A = USVT

Keep in mind that the singular values for matrix A will be the squareroots of the obtained eigen values as we compute the eigen values of A*AT.

The aforementioned equations make it evident that the entire received signal will appear as follows if we employ precoding matrix V at the transmitter side and post-precoding matrix UT at the receiver side.

y = U(USVT) Vx = Sx

 Where, S is a diagonal matrix, y is the signal being received, and x is the signal being sent. The multiple data streams between the transmitter and receivers are currently independent and interference-free (theoretically).

 

MATLAB Code for Singular Value Decomposition

clc;
clear;
close all;

% Define the matrix A
A = [1 2; 3 4];

% Compute the Singular Value Decomposition
[U, S, V] = svd(A);

% Display the results
disp('Matrix A:');
disp(A);

disp('Matrix U:');
disp(U);

disp('Matrix S:');
disp(S);

disp('Matrix V:');
disp(V);

% Verify the decomposition
A_reconstructed = U * S * V';
disp('Reconstructed Matrix A:');
disp(A_reconstructed);

% Compute A^T A
ATA = A' * A;
disp('Matrix A^T A:');
disp(ATA);

% Compute eigenvalues and eigenvectors of A^T A
[eigV, eigD] = eig(ATA);
disp('Eigenvalues of A^T A:');
disp(diag(eigD));
disp('Eigenvectors of A^T A:');
disp(eigV);

% Compute A A^T
AAT = A * A';
disp('Matrix A A^T:');
disp(AAT);

% Compute eigenvalues and eigenvectors of A A^T
[eigU, eigD2] = eig(AAT);
disp('Eigenvalues of A A^T:');
disp(diag(eigD2));
disp('Eigenvectors of A A^T:');
disp(eigU);

Output

Matrix A:
     1     2
     3     4

Matrix U:
   -0.4046   -0.9145
   -0.9145    0.4046

Matrix S:
    5.4650         0
         0    0.3660

Matrix V:
   -0.5760    0.8174
   -0.8174   -0.5760

Reconstructed Matrix A:
    1.0000    2.0000
    3.0000    4.0000

Matrix A^T A:
    10    14
    14    20

Eigenvalues of A^T A:
    0.1339
   29.8661

Eigenvectors of A^T A:
   -0.8174    0.5760
    0.5760    0.8174

Matrix A A^T:
     5    11
    11    25

Eigenvalues of A A^T:
    0.1339
   29.8661

Eigenvectors of A A^T:
   -0.9145    0.4046
    0.4046    0.9145

 

Copy the code from here

 
<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...