Skip to main content

Why is SVD useful in multi-antenna communication? | Channel Matrix, U, S, V


 

svd based transmission

These days, multi-antenna transmission and reception systems are practically universal. MIMO is one of the popular types of multi-antenna systems. By enabling numerous orthogonal data streams between the transmitter and receiver (or receivers) , such antennas have the primary advantage of increasing spectral efficiency. 

A matrix can be transformed linearly with the aid of SVD. We are aware that when determining an eigenvalue, the formula Av - λv = 0, is used, where v is an eigenvector with a corresponding eigenvalue of. For calculating SVD of a matrix A, firstly we compute A*AT ,then we compute A*AT - Î»v = 0To minimize the linear operations in a matrix, eigen vectors are used to simplify the matrix equations.

However, eigenvectors need not always be linearly independent (or orthogonal). However, orthogonal data streams are necessary to boost overall throughput and decrease interference between them in order to permit multiple data streams between multi-antenna communication.

In singular value decomposition, you'll get three matrices, U, S, and V. Where U and V are orthonormal eigenvectors of  A*AT    

and S is a diagonal matrix. U*U= V*VT = I (identity matrix).

The SVD of matrix A is given by the formula:

A = USVT

Keep in mind that the singular values for matrix A will be the squareroots of the obtained eigen values as we compute the eigen values of A*AT.

The aforementioned equations make it evident that the entire received signal will appear as follows if we employ precoding matrix V at the transmitter side and post-precoding matrix UT at the receiver side.

y = U(USVT) Vx = Sx

 Where, S is a diagonal matrix, y is the signal being received, and x is the signal being sent. The multiple data streams between the transmitter and receivers are currently independent and interference-free (theoretically).

 

MATLAB Code for Singular Value Decomposition

clc;
clear;
close all;

% Define the matrix A
A = [1 2; 3 4];

% Compute the Singular Value Decomposition
[U, S, V] = svd(A);

% Display the results
disp('Matrix A:');
disp(A);

disp('Matrix U:');
disp(U);

disp('Matrix S:');
disp(S);

disp('Matrix V:');
disp(V);

% Verify the decomposition
A_reconstructed = U * S * V';
disp('Reconstructed Matrix A:');
disp(A_reconstructed);

% Compute A^T A
ATA = A' * A;
disp('Matrix A^T A:');
disp(ATA);

% Compute eigenvalues and eigenvectors of A^T A
[eigV, eigD] = eig(ATA);
disp('Eigenvalues of A^T A:');
disp(diag(eigD));
disp('Eigenvectors of A^T A:');
disp(eigV);

% Compute A A^T
AAT = A * A';
disp('Matrix A A^T:');
disp(AAT);

% Compute eigenvalues and eigenvectors of A A^T
[eigU, eigD2] = eig(AAT);
disp('Eigenvalues of A A^T:');
disp(diag(eigD2));
disp('Eigenvectors of A A^T:');
disp(eigU);

Output

Matrix A:
     1     2
     3     4

Matrix U:
   -0.4046   -0.9145
   -0.9145    0.4046

Matrix S:
    5.4650         0
         0    0.3660

Matrix V:
   -0.5760    0.8174
   -0.8174   -0.5760

Reconstructed Matrix A:
    1.0000    2.0000
    3.0000    4.0000

Matrix A^T A:
    10    14
    14    20

Eigenvalues of A^T A:
    0.1339
   29.8661

Eigenvectors of A^T A:
   -0.8174    0.5760
    0.5760    0.8174

Matrix A A^T:
     5    11
    11    25

Eigenvalues of A A^T:
    0.1339
   29.8661

Eigenvectors of A A^T:
   -0.9145    0.4046
    0.4046    0.9145

 

Copy the code from here

 
<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for Constellation diagrams of ASK, FSK, and PSK 📚 Further Reading   MATLAB Script % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters numSymbols = 1000; % Number of symbols to simulate symbolIndices = randi([0 1], numSymbols, 1); % Random binary symbols (0 or 1) % ASK Modulation (BASK) askAmplitude = [0, 1]; % Amplitudes for binary ASK askSymbols = askAmplitude(symbolIndices + 1); % Modulated BASK symbols % FSK Modulation (Modified BFSK with 90-degree offset) fs = 100; % Sampling frequency symbolDuration = 1; % Symbol duration in seconds t = linspace(0, symbolDuration, fs*symbolDuration); fBase = 1; % Base frequency frequencies = [fBase, fBase]; % Same frequency for both % Generate FSK symbols with 90° phase offset fskSymbols = arrayfun(@(idx) ...     cos(2*pi*frequencies(1)*t) * (1-idx) + ...     ...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...