Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Analog and Digital Communication Mini Projects | FM, Telecommunication, Mod...

 

Mini Project Ideas


1. You can do your mini project on analog communication topic such as FM, walkie-talkie, etc.

[1.1] Analog Communication Based Project

[1.2] MATLAB Code for Frequency Modulation (FM)


2. Compare the ASK, FSK, and PSK systems' relative performances.

(Include an introduction, concise descriptions of ASK, FSK, and PSK, MATLAB, and Simulink. You can then compare ASK, FSK, and PSK by creating BER vs. SNR graphs for each of those modulations, as well as by comparing their bandwidth, noise resistivity, complexity, and other characteristics.)

3. M-ary Modulation Based Mini Projects

(You can go for this project if you are interested in doing projects based on frequently used and modern modulation techniques. You can compare the performance analysis of various modulation schemes, like, bit rate, complexity, SNR v/s BER graph. You know frequently used modulation technique is m ary QPSK. But now QAM is also becoming popular due to its less complexity. But there is still some limitations in QAM due to its capacity in the context of noise handling. On the other hand m ary QPSK is better for very large constellation points but this technique is more complex than QAM. So, your primary goal may be investigating up to how many constellation points QAM is better than QPSK. Although, now we don't need to transfer data using QPSK with large constellation points. Obviously, in real world QAM is still used. 

For this mini project you can include a comparison of  bit and baud rate of different modulation techniques. You can start from primary modulation techniques like, ask, fsk to QPSK or QAM)


3. Telecommunication based mini project

(Here, you can discuss mechanism of telecommunication - from end user to telephone exchange office and exchange office to gateway. You can also discuss uplink and downlink connection, operating frequency, modulation used for a particular generation wireless communication. You can include the role of fiber optics in case of telecommunication, etc.)


4. Role of Equalizer in Wireless Communication

[Read More] about Channel Estimation and Equalization

(Zero Forcing Equalizer, Least Square (LS) Equalizer, MMSE Equalizer, etc.)


digital communication project using ask

<<Previous Page

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

FFT Magnitude and Phase Spectrum using MATLAB

MATLAB Code clc; clear; close all; % Parameters fs = 100;           % Sampling frequency t = 0:1/fs:1-1/fs;  % Time vector % Signal definition x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t); % Compute Fourier Transform y = fft(x); z = fftshift(y); % Frequency vector ly = length(y); f = (-ly/2:ly/2-1)/ly*fs; % Compute phase phase = angle(z); % Plot magnitude of the Fourier Transform figure; subplot(2, 1, 1); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude of Fourier Transform'); grid on; % Plot phase of the Fourier Transform subplot(2, 1, 2); stem(f, phase, 'b'); xlabel('Frequency (Hz)'); ylabel('Phase (radians)'); title('Phase of Fourier Transform'); grid on;   Output  Copy the MATLAB Code from here % The code is written by SalimWireless.Com clc; clear; close all; % Parameters fs = 100; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector % Signal definition x = cos(2*pi*15*t -

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = hx + n ... (i) The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2. Additive White Gaussian Noise (AWGN) The mathematical effect involves adding Gauss

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t