Skip to main content

5G: Spectral Bands, Speed, and Other Factors



Lower carrier frequencies (< 6 GHz) are unable reliable signal propagation for 5G. However, only limited spectral bands are available in the sub-6 GHz spectrum. Only those frequencies are inadequate to meet the relentless increase in data rates in 5G wireless networks. So, what is the solution here? Exploration of the unused, high-frequency mm-wave band could be a good choice, ranging from 6 to 300 GHz. 
Mm-wave standards are already defined for indoor wireless personal area networks (WPAN) - IEEE 802.15.3c and wireless local area networks (WLAN) - IEEE 802.11.ad.


Which countries have 5G now, and what frequency bands are they using?

5G is now available in many countries. China and the United States are at the top of the list. Brand new 5G technology benefits approximately 356 cities in China and approximately 296 cities in the United States. Other countries that have already implemented 5G include the Philippines, South Korea, Canada, Spain, Italy, Germany, the United Kingdom, Saudi Arabia, and others.

In general, 5G currently employs three types of frequency bands. The first is frequency of less than 6 GHz or Sub-6 GHz band. Other frequency bands are in the millimeter wave range. It will also use low 5G bands, such as 600 MHz00 MHz, to improve coverage, particularly in rural areas.

For 5G communication, China, for example, uses frequencies ranging from 600 MHz to 4700 MHz. The frequencies in the United States range from 600 MHz to 4200 MHz. These bands are intended for end-user use. You may have heard that telecom companies also purchase high remedy frequency (i.e., millimeter wave) spectrum for 5G deployment. However, those extremely high frequencies are appropriate for 5G backhaul connections.

The current 5G frequency bands can be classified into three categories.

The Low Band (Usually ranges from 600 to 900 MHz, and they are suitable for rural deployment of 5G where signals need to traverse long distances from cell towers)
The Middle Band (Frequency ranges from 1 to 7 GHz)
The High Band (These are millimeter wave bands. They range from 24 to 48 GHz)


Current Speed of 5G:

The average 5G speed is 100 Mbps, which means that 5G users will receive 100 megabits per second. Depending on the coverage, number of users available per channel (5G communication channel), and other factors, the pick data throughput rate can range from 1 Gbps to 10 Gbps.

Recently, it was claimed that a 5G network could achieve 5 Gbps throughput using a 28 GHz band and 800 MHz bandwidth with carrier aggregation.


Millimeter wave applications in 5G:

We know that companies own millimeter wave spectrums in 5G auctions. In fact, we want to use such extremely high-frequency bands for ultra-high data rates and ultra-low latency in 5G deployment. These are critical for any network to lead automation in various sectors such as industry (machine-to-machine communication, for example), telemedicine, augmented reality (AR), virtual reality (VR), and so on.

However, those mm-wave bands are appropriate for backhaul connections in which two high 5G towers communicate via LOan S (line of sight) path and deliver very high data rates from large cell towers to nearby small cell towers or access points (APs). End users can connect to the internet via a nearby cell tower.


Also, Read About
[1] 5G Theoretical Aspects | Frequency and Spectrum, Speed, Massive MIMO & OFDM
# News about 5G

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

High Level and Low Level Modulation

High Level and Low Level Modulation You know for wireless communication is suitable for long distance communication. In wireless, for data transmission modulation become essential to avoid interference and to reduce antenna size significantly. Especially, in modulation process, we translate the low frequency baseband signal to higher frequency by modulating with high frequency carrier signal. For a typical communication system we generate the high frequency (carrier) signal by using local oscillator. Source signal or message signal is modulated with local oscillator. Then modulated signal is transmitted thru antenna.  Low Level Modulation In low level modulation, message signal is modulated with local  oscillator  that produces high frequency. Then the frequency of message signal is translated to much higher frequency. Then the modulated signal passes thru wideband amplifier. High Level Modulation In high level modulation, source or message signal is passed thru wideband ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. cl...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...