Skip to main content

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...


 

MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK


Output





If M>8, the distance between constellation points is short, and a higher Eb/No (SNR per Bit) ratio is required to reach the desired BER. Although the mapping from the data bits is arbitrary, some data bits are typically used. Every constellation point in the M-PSK constellation has two neighbors, each with an equal chance of making an error. As there are four bits per symbol, BER assumes a one-bit error for every mistake in a character. The demodulator in PSK must be able to calculate the received sinusoid's phase about some reference phase. While using the same bandwidths as ASK, PSK is less prone to errors than ASK. Also, using bandwidth with a significant data rate is more effective.

In the above figure, it is clear that PSK is more robust than QAM in the context of noise resilience. QAM modulations, including 16-QAM, are sensitive to both amplitude and phase errors. As you increase the number of constellation points (e.g., from 16-QAM to 8-PSK), the signal becomes more susceptible to amplitude and phase noise. In contrast, PSK modulations primarily rely on phase information and may be less sensitive to amplitude variations. This can make 8-PSK more robust in this scenario. 

QAM schemes require a higher SNR to achieve the same error rates as PSK schemes with the same number of constellation points. This means that 16-QAM may require a higher SNR than 8-PSK to achieve a satisfactory bit error rate (BER) or symbol error rate (SER). In practical communication systems, achieving the necessary SNR can be challenging, especially in noisy or fading channels.

MATLAB Code for BER vs SNR for m-ary QAM

clc;
clear all;
close all;


% Set parameters
snr_dB = -20:2:20; % SNR values in dB
qam_orders = [4, 16, 64, 256]; % QAM modulation orders

% Loop through each QAM order
for qam_order = qam_orders
% Calculate theoretical BER using berawgn
ber = berawgn(snr_dB, 'qam', qam_order);

% Plot the results
semilogy(snr_dB, ber, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));
hold on;
end

% Add labels and legend
title('BER vs SNR for Variable QAM');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
grid on;
legend('Location', 'best');

Output

 

Fig: BER vs SNR graph for Various QAM
 

Copy the aforementioned MATLAB Code for BER vs SNR for   m-ary QAM from Here

 

 

MATLAB Code for BER vs SNR for m-ary PSK

clc;
clear all;
close all;

% Parameters
num_symbols = 1e5; % Number of symbols
snr_db = 0:2:20; % Range of SNR values in dB

% PSK orders to be tested
psk_orders = [2, 4, 8, 16, 32];

% Initialize BER arrays
ber_results = zeros(length(psk_orders), length(snr_db));

% BER calculation for each PSK order and SNR value
for i = 1:length(psk_orders)
psk_order = psk_orders(i);

for j = 1:length(snr_db)
% Generate random symbols
data_symbols = randi([0, psk_order-1], 1, num_symbols);

% Modulate symbols to generate signal
modulated_signal = pskmod(data_symbols, psk_order);

% Add AWGN to the signal
snr_linear = 10^(snr_db(j)/10);
received_signal = awgn(modulated_signal, snr_db(j), 'measured');

% Demodulate received signal
demodulated_symbols = pskdemod(received_signal, psk_order);

% Calculate BER
ber_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols;
end
end

% Plot BER vs. SNR
figure;
semilogy(snr_db, ber_results(1, :), 'o-', 'DisplayName', 'BPSK');
hold on;

for i = 2:length(psk_orders)
semilogy(snr_db, ber_results(i, :), 'o-', 'DisplayName', sprintf('%d-PSK', psk_orders(i)));
end

title('BER vs. SNR for Various PSK Schemes');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
legend('Location', 'best');
grid on;
hold off;

Output

 
Fig: BER vs SNR graph for various PSK
 

Copy the above code for BER vs SNR for m-ary PSK from here



Read more about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

 There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 1. Equal gain combining method We add the correlated data streams from different antennas in the equal gain combining method. Then we multiply the resultant data with (1/(number of antennas)) For example, for two antenna gain-combining  If the received symbols are y1 and y2, then  Equal combing gain, y_egc = 0.5 * (y1 + y2) 2. Maximum ratio combining method We multiply the individual data streams with weights in the maximum ratio combining method. More weightage is multiplied by those data streams with maximum {|h|^2}, where h denotes the channel impulse response. And less weightage is multiplied by those data streams with corresponding small value of  {|h|^2}.  Then we sum the data streams to improve SNR. In the case of Maximum Ratio Combining, if y1 an...

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation

   Pulse Width Modulation (PWM) MATLAB Script clc; clear all; close all; fs=30; %frequency of the sawtooth signal fm=3; %frequency of the message signal sampling_frequency = 10e3; a=0.5; % amplitide t=0:(1/sampling_frequency):1; %sampling rate of 10kHz sawtooth=2*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave subplot(4,1,1); plot(t,sawtooth); % plotting the sawtooth wave title('Comparator Wave'); msg=a.*sin(2*pi*fm*t); %generating message wave subplot(4,1,2); plot(t,msg); %plotting the sine message wave title('Message Signal'); for i=1:length(sawtooth) if (msg(i)>=sawtooth(i)) pwm(i)=1; %is message signal amplitude at i th sample is greater than %sawtooth wave amplitude at i th sample else pwm(i)=0; end end subplot(4,1,3); plot(t,pwm,'r'); title('PWM'); axis([0 1 0 1.1]); %to keep the pwm visible during plotting. %% Demodulation % Demodulation: Measure the pulse width to reconstruct the signal demodulated_signal = zeros(size(msg)); for i = 1:leng...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Analog and Digital Communication Mini Projects | FM, Telecommunication, Mod...

  Mini Project Ideas 1. You can do your mini project on analog communication topic such as FM, walkie-talkie, etc. [1.1]  Analog Communication Based Project [1.2] MATLAB Code for Frequency Modulation (FM) 2. Compare the ASK, FSK, and PSK systems' relative performances. ( Include an introduction, concise descriptions of ASK, FSK, and PSK, MATLAB, and Simulink . You can then compare ASK, FSK, and PSK by creating BER vs. SNR graphs for each of those modulations, as well as by comparing their bandwidth, noise resistivity, complexity, and other characteristics. ) 3. M-ary Modulation Based Mini Projects (You can go for this project if you are interested in doing projects based on frequently used and modern modulation techniques. You can compare the performance analysis of various modulation schemes, like, bit rate, complexity, SNR v/s BER graph. You know frequently used modulation technique is m ary QPSK. But now QAM is also becoming popular due to its less complexity. But there is...