Skip to main content

Mathematical Aspects of Beamforming in MIMO



Beam steering, which permits strong directed beams towards the receiver to combat excessive pathloss, especially for higher frequency bands, immediately comes to mind when discussing mathematical aspects of Beamforming in MIMO antennas. On the other side, it also lessens signal interference and improves the effectiveness of spatial multiplexing in Massive MIMO communication. Let's go right to the mathematical parts of Beamforming, which will make it easier for you to code in Python and MATLAB.



1. Beam Steering (Analog Beamforming)




In the first stage, the BS applies beam steering at the side of the mobile station (MS) while the MS enables omnidirectional transmission. In the following step, the MS uses beam steering while the BS is an omnidirectional transmitter. The best beamformer and combiner pair are then identified at BS & MS, and they make communication available. Following is an outline of the codebook:


 

 
Let's say a small town or village has a cell tower in the midst of it. Now everybody can understand the cell tower's 360-degree coverage area (if not, you restrict the coverage to a particular direction or sector). The codebook above specifies what the signal intensity will be different at a specific coverage zone defined by the azimuth angle or elevation angular ranges from the transmitter (here, cell tower).

Assume that the first element in the given set, f, indicates the coverage zone from 0 to 10 degrees.
The second element depicts the coverage area between 10 and 20 degrees from the base station.
Additionally, every component in the codebook has directions, or azimuth angle ranges from 0 to 360 degree.
A similar procedure is applicable for mobile stations (MS) to identify the strongest beam between them by determining the optimum path (here, beam) from MS to BS.


2. Digital Beamforming


Fig: Digital Beamforming

Each antenna element, in this case, is connected to a separate RF chain during digital Beamforming. Filters, mixers, amplifiers, etc., make up RF chains. Each RF chain controls a particular data stream between TX and RX.
Any signal or data stream transmitted by transmitter side antenna T1 is typically received by all receiver side antennas. There are four different user equipment (UEs) or mobile stations shown in the above diagram. All four UEs receive any signal that is sent by antenna T1. Assume that receiver R1 was the only one for which the signal was intended. It will then be regarded as interference for receiver side antennas R1, R2, R3,..., and R8. In this situation, a digital beamforming matrix is crucial to eliminate interference at all undesirable receivers while transmitting the signal from T1. and permit R1 to only receive the signal. The individual data streams between T2 and R2, T3 and R3, and so forth can be assumed similarly.

At the receiver side, the signal received by users vector y, 
                                                                y = √ρHDs + n
                                                               where H=Channel Matrix
                                                               s = transmitted symbol/signal
                                                               n = additive white Gaussian noise (AWGN)
                                                               ρ = average received power
                                                               D = digital precoding/beamforming matrix

For a multiuser scenario, the hybrid beamforming equation looks like
                                                               y = √ρ.H.[D1 D2 ... Dn].s + n
                                                               Where 'Dn' denotes the digital precoder 
                                                                for u-th user

Now cancel interference at u-th user due to other users; we must design the baseband precoder so that HuDn for nǂ u should be zero at the u-th mobile station (MS). Therefore, HuDn =0 cancels interferences at u-th MS.
 
 
 ------------------------------------------------------------------------------------------------------------
. - - -  - - - - - - beamforming
                            - -  - Analog Beamforming
.                           - -  - Digital Beamforming
.                                      - - Equations related to Spectral Efficiency in Digital Beamforming
.                           - -  - Hybrid Beamforming
.                                      - - Equations related to Spectral Efficiency in Hybrid Beamforming
--------------------------------------------------------------------------------------------------------------

3. Hybrid Beamforming


First, we connect multiple antenna elements in hybrid Beamforming to increase gain, which is crucial for today's higher-frequency wireless communication systems. Then, precisely as illustrated in the above figure, we apply digital Beamforming to those RF chains. The key advantages of hybrid Beamforming are that
Less interference than digital Beamforming without sacrificing a significant difference in a MIMO system's throughput.
The transmitted signal has a large amount of gain added by analog Beamforming or beam steering to extend its range.
For lower-dimensional MIMO systems, digital Beamforming works well, but massive MIMO systems are where the future of communication is headed. Compared to digital Beamforming, hybrid Beamforming is less complicated and more cost-effective.

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication ...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview 🧮 Multipath Components or MPCs 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 🧮 Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes 📚 Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...