Skip to main content

FIR vs IIR Digital Filters and Recursive vs Non Recursive Filters


Key Features

  • The higher the order of a filter, the sharper the stopband transition
  • The sharpness of FIR and IIR filters is very different for the same order
  • A FIR filter has an equal time delay at all frequencies, while the IIR filter's time delay varies with frequency. Usually, the biggest time delay in the IIR filter is at the filter's cutoff frequency.
  • The term 'IR' (impulse response) is in both FIR and IIR. The term 'impulse response' refers to the appearance of the filter in the time domain.

1. What Is the Difference Between an FIR and an IIR Filters?

The two major classifications of digital filters used for signal filtration are FIR and IIR. The primary distinction between FIR and IIR filters is that the FIR filter provides a finite period impulse response. In contrast, IIR is a type of filter that produces an infinite-duration impulse response for a dynamic system.

Mathematical representation of a filter equation:

A*y(t) = c1*x(t) + c2*x(t - t0) + c3*x(t - t1) + c4*x(t - t2) + . . . + cn*x(t – tn)
    

To make A equal 1, we change the values of the coefficients c1, c2, c3, etc., in the filter equation above. We carry out this to recover the original signal from various multipath (with different delay spreads).

We concentrate on taps and the corresponding weights when designing filters. The filter converges for some weightings of various taps. Some filters function quickly, while others function precisely. Applications determine uses. FIR filters have a limited number of taps and generate a finite amount of impulses. IIR filters, on the other hand, can generate an infinite number of impulse responses despite having a finite number of taps.

Why do we use filters?

The purpose of the use of different kinds of filters is different. But in general, they all smoothen the noisy signal.

MATLAB Code for FIR Filter

In this MATLAB code, we use a FIR filter of order 20 to remove high-frequency noise from a clean sinusoidal signal. The highest frequency component in the sinusoidal signal is 500 Hz. We set the cutoff frequency of the FIR filter to 1000 Hz.

clc;
clear;

% Sampling parameters
Fs = 8000; % Sampling Frequency (Hz)
t = 0:1/Fs:0.1;

% Create a noisy signal
f_clean = 500;
f_noise = 3000;
signal_clean = sin(2*pi*f_clean*t);
signal_noise = 0.5 * sin(2*pi*f_noise*t);
signal = signal_clean + signal_noise;

% FIR Filter Design
N = 20;
fc = 1000;
wn = fc / (Fs/2);
b = fir1(N, wn, 'low', hamming(N+1));

filtered_signal = filter(b, 1, signal);

% Plot
figure;
subplot(3,1,1); plot(t, signal); title('Noisy Signal');
subplot(3,1,2); plot(t, filtered_signal); title('Filtered Signal');
subplot(3,1,3); plot(t, signal_clean); title('Original Clean Signal');
    

Search related filters

Output

MATLAB FIR filter output showing noisy, filtered, and original signals

2. Difference between recursive and non-recursive filters

The output of a recursive filter is directly dependent on one or more of its previous outputs. In a non-recursive filter, the output is independent of previous outputs, such as a feed-forward system with no feedback.

3. Solve: The impulse response of a filter is defined as h[n] =

Impulse response filter question diagram

Now tell us this filter is a 1. Non-recursive IIR filter 2. Recursive IIR filter 3. Non-recursive FIR filter 4. Recursive FIR filter

Answer: Option 3

Generally, an FIR filter has a finite number of impulse responses and the output is independent of previous outputs. Therefore, the correct answer is Non-recursive FIR filter.

Next Page >>

Read more about

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ī€)) ∫ₓ∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ī„) dĪ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...