Skip to main content

FIR vs IIR Digital Filters and Recursive vs Non Recursive Filters



Key Features

  • The higher the order of a filter, the sharper the stopband transition 
  • The sharpness of FIR and IIR filters is very different for the same order 
  • A FIR filter has an equal time delay at all frequencies, while the IIR filter's time delay varies with frequency. Usually, the biggest time delay in the IIR filter is at the filter's cutoff frequency.
  • The term 'IR' (impulse response) is in both FIR and IIR. The term 'impulse response' refers to the appearance of the filter in the time domain. 

1. What Is the Difference Between an FIR and an IIR Filters?


The two major classifications of digital filters used for signal filtration are FIR and IIR. The primary distinction between FIR and IIR filters is that the FIR filter provides a finite period impulse response. In contrast, IIR is a type of filter that produces an infinite-duration impulse response for a dynamic system.

Mathematical representation of a filter equation:

A*y(t) = c1*x(t) + c2*x(t - t0) + c3*x(t - t1) + c4*x(t - t2) + . . . + cn*x(t – tn)

To make A equal 1, we change the values of the coefficients c1, c2, c3, etc., in the filter equation above. We carry out this to recover the original signal from various multipath (with different delay spreads).
We concentrate on taps and the corresponding weights when designing filters. The filter converges for some weightings of various taps. Some filters function quickly, while others function precisely. Applications determine uses. However, the uses for various filters vary. FIR filters have a limited number of taps. Simple FIR filters are linear by nature. Additionally, they generate a finite amount of impulses. IIR filters, on the other hand, can generate an infinite number of impulse responses despite having a finite number of taps since the


Why do we use filters?
The purpose of the use of different kinds of filters is different. But in general, they all smoothen the noisy signal. 
 

MATLAB Code for FIR Filter

In this MATLAB code, we use a FIR filter of order 20 to remove high-frequency noise from a clean sinusoidal signal. The highest frequency component in the sinusoidal signal is 500 Hz. We set the cutoff frequency of the FIR filter to 1000 Hz, so the filter attenuates all frequency components above 1000 Hz. As a result, we are able to recover the original message signal.
 
 
clc;
clear;

% Sampling parameters
Fs = 8000; % Sampling Frequency (Hz)
t = 0:1/Fs:0.1; % 1 second duration

% Create a noisy signal: clean sine wave + high-frequency noise
f_clean = 500; % Clean signal frequency (Hz)
f_noise = 3000; % Noise frequency (Hz)
signal_clean = sin(2*pi*f_clean*t);
signal_noise = 0.5 * sin(2*pi*f_noise*t);
signal = signal_clean + signal_noise;

% FIR Filter Design Parameters
N = 20; % Filter order (number of taps - 1)
fc = 1000; % Cutoff frequency (Hz)
wn = fc / (Fs/2); % Normalized cutoff frequency (0 to 1)

% Design the FIR filter using Hamming window
b = fir1(N, wn, 'low', hamming(N+1)); % 'low' => low-pass filter
% b is the filter coefficient vector

% Apply the FIR filter to the noisy signal
filtered_signal = filter(b, 1, signal);

% Plot the signals
figure;
subplot(3,1,1);
plot(t, signal);
title('Noisy Signal');
xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,2);
plot(t, filtered_signal);
title('Filtered Signal (After FIR Low-Pass)');
xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,3);
plot(t, signal_clean);
title('Original Clean Signal');
xlabel('Time (s)'); ylabel('Amplitude'); 
web('https://www.salimwireless.com/search?q=filter', '-browser');
 

Output 

 
 
 
 
 
 



2. Difference between recursive and non-recursive filters:


The output of a recursive filter is directly dependent on one or more of its previous outputs. However, in a non-recursive filter, the system used is one in which the output is independent of any previous outputs, such as a feed-forward system with no feedback. As a result, the filter is following a non-recursive system here.

3. Solve: The impulse response of a filter is defined as h[n] =




Now tell us this filter is a
1. Non-recursive IIR filter
2. Recursive IIR filter
3. Non-recursive FIR filter
4. Recursive FIR filter
Answer: Option 3

Generally, an FIR filter has a finite number of impulse responses or a finite period of impulse responses. In the case of FIR, the output is usually independent of the previous output. So, the correct answer to the above question is 'Non-recursive FIR filter,' or option 3.
Next Page>>

Read more about

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...