Skip to main content

FIR vs IIR Digital Filters and Recursive vs Non Recursive Filters



Key Features

  • The higher the order of a filter, the sharper the stopband transition 
  • The sharpness of FIR and IIR filters is very different for the same order 
  • A FIR filter has an equal time delay at all frequencies, while the IIR filter's time delay varies with frequency. Usually, the biggest time delay in the IIR filter is at the filter's cutoff frequency.
  • The term 'IR' (impulse response) is in both FIR and IIR. The term 'impulse response' refers to the appearance of the filter in the time domain. 

1. What Is the Difference Between an FIR and an IIR Filters?


The two major classifications of digital filters used for signal filtration are FIR and IIR. The primary distinction between FIR and IIR filters is that the FIR filter provides a finite period impulse response. In contrast, IIR is a type of filter that produces an infinite-duration impulse response for a dynamic system.

Mathematical representation of a filter equation:

A*y(t) = c1*x(t) + c2*x(t - t0) + c3*x(t - t1) + c4*x(t - t2) + . . . + cn*x(t – tn)

To make A equal 1, we change the values of the coefficients c1, c2, c3, etc., in the filter equation above. We carry out this to recover the original signal from various multipath (with different delay spreads).
We concentrate on taps and the corresponding weights when designing filters. The filter converges for some weightings of various taps. Some filters function quickly, while others function precisely. Applications determine uses. However, the uses for various filters vary. FIR filters have a limited number of taps. Simple FIR filters are linear by nature. Additionally, they generate a finite amount of impulses. IIR filters, on the other hand, can generate an infinite number of impulse responses despite having a finite number of taps since the


Why do we use filters?
The purpose of the use of different kinds of filters is different. But in general, they all smoothen the noisy signal. 
 

MATLAB Code for FIR Filter

In this MATLAB code, we use a FIR filter of order 20 to remove high-frequency noise from a clean sinusoidal signal. The highest frequency component in the sinusoidal signal is 500 Hz. We set the cutoff frequency of the FIR filter to 1000 Hz, so the filter attenuates all frequency components above 1000 Hz. As a result, we are able to recover the original message signal.
 
 
clc;
clear;

% Sampling parameters
Fs = 8000; % Sampling Frequency (Hz)
t = 0:1/Fs:0.1; % 1 second duration

% Create a noisy signal: clean sine wave + high-frequency noise
f_clean = 500; % Clean signal frequency (Hz)
f_noise = 3000; % Noise frequency (Hz)
signal_clean = sin(2*pi*f_clean*t);
signal_noise = 0.5 * sin(2*pi*f_noise*t);
signal = signal_clean + signal_noise;

% FIR Filter Design Parameters
N = 20; % Filter order (number of taps - 1)
fc = 1000; % Cutoff frequency (Hz)
wn = fc / (Fs/2); % Normalized cutoff frequency (0 to 1)

% Design the FIR filter using Hamming window
b = fir1(N, wn, 'low', hamming(N+1)); % 'low' => low-pass filter
% b is the filter coefficient vector

% Apply the FIR filter to the noisy signal
filtered_signal = filter(b, 1, signal);

% Plot the signals
figure;
subplot(3,1,1);
plot(t, signal);
title('Noisy Signal');
xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,2);
plot(t, filtered_signal);
title('Filtered Signal (After FIR Low-Pass)');
xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,3);
plot(t, signal_clean);
title('Original Clean Signal');
xlabel('Time (s)'); ylabel('Amplitude'); 
web('https://www.salimwireless.com/search?q=filter', '-browser');
 

Output 

 
 
 
 
 
 



2. Difference between recursive and non-recursive filters:


The output of a recursive filter is directly dependent on one or more of its previous outputs. However, in a non-recursive filter, the system used is one in which the output is independent of any previous outputs, such as a feed-forward system with no feedback. As a result, the filter is following a non-recursive system here.

3. Solve: The impulse response of a filter is defined as h[n] =




Now tell us this filter is a
1. Non-recursive IIR filter
2. Recursive IIR filter
3. Non-recursive FIR filter
4. Recursive FIR filter
Answer: Option 3

Generally, an FIR filter has a finite number of impulse responses or a finite period of impulse responses. In the case of FIR, the output is usually independent of the previous output. So, the correct answer to the above question is 'Non-recursive FIR filter,' or option 3.
Next Page>>

Read more about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...