Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

5G Channel Estimation using Orthogonal Matching Pursuit (OMP)



For millimeter wave massive MIMO communication in 5G, we observe that the number of available multipath that avails communication is much smaller than the maximum connections possible between the transmitter(TX) and receiver(RX). Only a few MPCs reach at receiver with good received signal strength. For example, the number of strong MPCs that reaches the receiver is L and there is N transmitter antenna on the transmitter side and N number of antennas on the receiver side.

So, from the channel matrix of the massive MIMO system, we can say the total number of available paths or connections between TX and RX is equal to, N X N or, N^(2)

Now, L << N^(2)

For simplicity, if the number of possible strong beams from the transmitter and receiver sides are NtBeams and NrBeams, then, L = NtBeams * NrBeams

If we look up the massive MIMO channel matrix, then, H=



Primarily, if the number of available MPCs to avail communication between TX and RX are much lesser than the maximum connections possible, N^(2), then the channel matrix will be sparse. Because MPCs other than stronger L number of paths are so weak that they cannot communicate between TX and RX.

Sparse channel matrix means where the elements are zeros. We have nothing to do with those elements at all. So, we need such an algorithm that can sense the zeros of the channel matrix and we can transmit our signal thru that selected first L number of stronger paths. The orthogonal matching Pursuit (OMP) algorithm helps us to do that. It can sense a sparse matrix. OMP is sometimes termed as the "Compressive Sensing Method".


Orthogonal Matching Pursuit Algorithm:

Let assume, NtBeams = NrBeams = 28

Total stronger connections or paths, L = 28 * 28 = 784 (it is observational)

Also assume, the number of antennas at both the transmitter and receiver side is equal to 32

So, the channel matrix contains 32 * 32 elements or 1024 elements

Now, the Equivalent sensing matrix, Q (say), will have an array dimension of 784 X 1024


Mathematically,

y = Qhb + n

Here, y = received vector

Q = Equivalent sensing matrix

hb = beamspace channel matrix where the number of elements is N X N = N^(2). It is a sparse matrix as there are only L-acceptable elements out of N^(2)

n = noise


Also assume, Matrix Q contains n number of columns, like that,

Q = [q1 q2 q3 ..... qn]

Now, we focus on finding out the maximum in the context of which column with a projectile with y generates maximum value, such that,

i(1) = argmax |(qjH / ||qj||)*y| where, j=1,2,...,n

Let's assume, qi1 column in Q matrix contributes maximum value. Then find out using the least square solution

min ||y - qi1*hb1|| (We try to make it zero)

Where, hb1 is any column of hb

Where, hb1= (qi1H * qi1)^(-1) * qi1H *y


Now, take a residue matrix as,

r1 = y - qi1*hb1

Now, we'll find the maximum correlation of residue matrix r1 by finding out which column of Q with a projectile with r1 generates maximum value, such that,

i(2) = argmax|(qjH / ||qj||)*r1| where, j=1,2,...,n

Let assume, qi2 column in Q generates the maximum value

Now form a matrix, Qn, like that,

Qn = [qi1 qi2]

Now find out hb2

hb2 = (QnH * Qn)^(-1) * QnH *y

Now update the residue matrix as,

r2 = y - Qn*hb2

If norm of ||r(n-1) - rn|| falls below a threshold value, then close the loop

In our case, if we consider r2-r1 falls below the threshold, then we close the loop.

If we find hb2=[3;2] then we do such operations in hb matrix, such that,

and if i(1) = 5 and i(2) = 2

Then hb will be [0;2;0;0;3;0; ... up to 28th row all are 0]

Here, we place the element value of hb2 in hb matrix in such row with row number matches with the value of i(1) and i(2)


Mathematical Example of Orthogonal Matching Pursuit (OMP):

Let's assume, for a MIMO communication system,

The size of the equivalent sensing matrix, Q is 4 X 6

And received signal matrix, y=




Now, y = Qhb

Or,

Where, hb =beamspace matrix =



Let assume, Q = [ q1 q2 q3 q4 q5 q6]

Here, q1 is the first column of Q, q2 is the second column of Q, and so on.


First Iteration of Orthogonal Matching Pursuit:

Now we find the maximum correlation of y by finding out which column in Q generates the maximum value with the projection of y,

Or,

QT*y =



Here, we can see the element in the 5th row is the maximum among all elements. So, we’ll select the 5th column of Q with which y has the maximum correlation value.

Now, hb1 = (q5'*q5)^(-1) * q5'*y

Where q5’ denotes the transpose of q5

Or,

hb1 = 4

Residue Matrix, r1 = y – q5* hb1

Or, r1 =


Here, we observe residual matrix r1 is not a zero matrix. So, we go for 2nd iteration.

Second Iteration of Orthogonal Matching Pursuit

Where we find the maximum correlation of r1 with respect to Q matrix.

Alternatively,

QT*r1=


Now, we see the element in the 2nd row of the above matrix generates the maximum value so r1 has a maximum correlation with the 2nd column of Q Matrix.

Now, we’ll form a new matrix, Qn = [q5 q2]

We find hb2 = (Qn'*Qn)^(-1)*Qn'*y;

Or, hb2 =


Now updated residue matrix, r2 = y – Qn* hb2

Or, r2=


Now we get the desired value in residue matrix r2 where all elements are zeros. So, beamspace matrix, hb will be


Here, we replace the elemental value of hb in that rows which are equal with the number of columns which generates maximum values with projection with y, then r1, and so on.

Now, from the mathematics we can say,

y = Q* hb

Or,



<< Back to Previous Page


Also read about

[1] 5G : Channel modelling for millimeter wave

[2] Time-delayed saleh valenzuala cluster model for UWB & mm-Wave

#beamforming

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier ...

Raised Cosine Filter in MATLAB

  MATLAB Code clc; clear all; close all; Data_sym = [0 1 1 0 1 0 0 1]; M = 4; Phase = 0; Sampling_rate = 48e3; Data_Rate = 100; Bandwidth = 400; Upsampling_factor = Sampling_rate/Data_Rate; Rolloff = 0.4; Upsampled_Data = upsample(pskmod(Data_sym,M,Phase),Upsampling_factor); Pulse_shape = firrcos(2*Upsampling_factor,Bandwidth/2,Rolloff,Sampling_rate,'rolloff','sqrt'); Output What if we change the roll-off roll-off = 0.01 roll-off = 0.99 What if we change the bandwidth Bandwidth = 100 Hz     Bandwidth = 1000 Hz    What if we change the sampling rate  Sampling rate = 10 KHz  Sampling rate = 100 KHz Another MATLAB Code % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters fs = 1000; % Sampling frequency in Hz symbolRate = 100; % Symbol rate (baud) span = 6; % Filter span in symbols alpha = 0.25; % Roll-off factor for raised cosine filter % Generate random data symbols numSymbols = 100; % Number of symbols data = randi([0 1], num...

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Frequency Bands : EHF, SHF, UHF, VHF, HF, MF, LF, VLF and Their Uses

Frequency Bands EHF, SHF, UHF, VHF, HF, MF, LF... 1. Extremely High Frequency (EHF)30 - 300 GHz Uses 5G Networks 5G millimeter wave band , 6G and beyond (Experimental) RADAR, 2. Super High Frequency (SHF)3 - 30 GHz Uses Ultra-wideband (UWB , Airborne RADAR, Satellite Communication, Microwave Link Communication or SATCOM 3. Ultra High Frequency (UHF)300 - 3000 MHz Uses Satellite Communication, Television, surveillance, navigation aids Also, read important wireless communication terms 4. Very High Frequency (VHF)30 - 300 MHz Uses Television, FM broadcast, navigation aids, air traffic control, 5. High Frequency (HF)3 - 30 MHz Uses Telephone, Telegram and Facsimile, ship to coast, ship to aircraft communication, amateur radio, 6. Medium Frequency (MF)300 - 3000 KHz Uses coast guard communication, direction finding, AM broadcasting , maritime radio, 7. Low Frequency (LF)30 - 300 KHz Uses Radio beacons, Navigational Aids 8. Very Low Frequency (VLF)3 - 30 KHz...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...