Skip to main content

Wireless Communication Interview Questions | Page 3



Wireless Communication Interview Questions | Page 1 | Page 2 | Page 3 | Page 4 ...

Wireless Communication

Not Example of wireless media

A. Wired communication. Co-axial cable (bandwidth is around 200MHz) is a famous example of a wired communication medium. Fiber optics can also be an excellent example of a non-wireless communication medium. Other examples are twisted pair cables (bandwidth is around 600MHz), etc. 


Who created the first wireless communication device? What is it named?

A. Jagadish Chandra Bose first studied millimeter-length electromagnetic waves in the 1890s. The earliest work on millimeter wave frequency band may also be dated back to the 1890s by, e.g., Bose and Lebedev.  


What is the battery capacity of drumroar magnetic wireless earphones?

A. The battery rating of a typical magnetic wireless earphone is 65 mAh.


Which device is used in towers to provide wireless signals to our home routers?

A. At the base station, it sends or receives data streams from different users using antennas. On the other hand, there may be sensing devices. There may be a lot of complex circuitries to allocate bandwidth to individual users, etc. A typical large base station transmits a power of 40 watts.


Q. Explain briefly the services provided by the 802.11 protocol in wireless communication 

A. IEEE 802.11 protocol was developed by IEEE for LAN Technologies. 


Q. Which wireless technology can provide a metropolitan area with up to 100 Mbps bandwidth?

A. WLAN


Q. Steps to connect devices in wireless media

A. If you want to connect PDAs, like mobile laptops, to the cell tower, you need a modem. 'modem' is an abbreviation of 'modulator-demodulator.' If we want to connect our PDAs to WLAN, then we need a router at our home to connect to the core network. 

 

Q. What is an even channel in communication?


Q. What is the use of process ID during communicating over the Internet?

A. See answer


Q. Why do e companies spend a lot on secure data transmission?


Antenna and wave propagation interview questions and MIMO system

What are dB and dBm?

A. dB is an abbreviation of decibel. In dB calculation, the ratio of noise power to signal power is logarithmic scale because logarithmic is more convenient in this context.

dB = log[10](signal power / noise power)

log[10] indicates log with base 10

dBm = log[10] (signal power / 1 milliwatt noise power)

By calculation 1 dB = 30 dBm

Use dB to dBm calculator and vice versa


What do you know about a MIMO system's spatial multiplexing (SM), rank, and condition number?

A. Want to know about the Rank and Condition Number of the Channel Matrix? [click here]


Let's assume there are 1 transmitter antenna and 2 receiver antenna. How do you communicate with 2 receiver antennas simultaneously from the transmitter antenna?


What is spatial division multiplexing or SDM?


How many simultaneous data streams are possible between 2 X 2 MIMO antennas?

A. 2


How many individual antennas are required for the Alamouti scheme?

A, Two transmitter antennas and a receiver antenna. (2 X 1 MIMO). read more about alamouti scheme


MIMO technology is used in wireless systems to archive

A. MIMO technology in wireless communication increases capacity by sending data from multiple antennas and receiving it from multiple receivers. In MIMO, we can send multiple parallel data streams by spatial multiplexing through a single channel.


What is the optimum isolation in the MIMO antenna system?

A. Antenna isolation is a process to keep interference between antennas medium or reduced to an acceptable level. Usually, measurement of power transfer from one ant nana to another. It is measured in decibels (dB). Isolation should be as large as possible to reduce interferences. The popular methods to reduce interference are the physical separation of the antenna, polarization, optimization of antenna patterns, filtering, etc.    


How many types of MIMO CSI transmission are categories available based on the amount of CSI?

A. There may be two cases. The transmitter may be aware of CSI. In another case, the transmitter may need to be mindful of CSI. In the first case, we can apply SVD to the channel matrix and benefit from spatial multiplexing of MIMO. In the second scenario, channel estimate via pilot signal retrieval may be helpful.


What is the electric power consumption of a massive MIMO antenna?

The 64T 64R or 64 X 64 massive MIMO antennas consume about 1,500 watts maximum.


What is an outage in a wireless communication system?  

A. As per Shannon's law, every communication channel can transfer data from transmitter to receiver. For Example, we assume the capacity of a wireless system is C bits/s/Hz. Again, we are sending a data rate of R bits/s/Hz. Primarily, we must choose a data rate o to communicate between the transmitter and receiver. If our data rate selected R > C, then an outage occurs. No communication is possible between TX and RX. However, the MIMO system reduces the probability of an outage because multiple simultaneous data streams are potential between the transmitter and receiver. On the other hand, multiple independent data streams multiply the capacity of a system. 


(MIMO) What are the advantages of clustering instead of MIMO antenna?


What is the process of beam framing the MIMO system?


Identify the challenges in the control of the MIMO system.


Q. What is the future scope of spectral efficiency improvement in UL massive MIMO using space-time block? Coding?


Q. What is the process of beam framing the MIMO system?

A. See answer


What are the s11 and s21 of the MIMO antenna?

We can reduce interfaces between multiple antenna elements by using sound inter-element isolation. We must design the MIMO antenna element accordingly to achieve high gain. That is also recommended for higher WLAN frequencies.

When designing MIMO antennas, we generally get the terms like S11, S21, S31, etc. Here, S21 represents the reflected signal power from element or antenna no due to transmission from element or antenna 1. Obviously, that causes interference if the intensity is above the acceptable level. Usually, isolation less than -20 dB is considered sound isolation for typical MIMO systems.   

Usually, power transfer between an antenna and an antenna is measured in dB or decibels. It is a logarithmic scale. In our case, it is 10* og(reflected power / total transmission power). Here, the base of the log is 10.


Types of antennae used for coverage and interference reduction

A. You can use a MIMO system or closely placed antenna elements to produce a stronger main lobe to focus the signal towards a particular receiver. You know, beamforming dramatically reduces interference. On the other hand, the MIMO system shows spatial multiplex property, which leads to independent data streams between transmitter and receiver receivers.


An antenna operates single-frequency or multiple-frequencies

A. An antenna may operate simultaneously at multiple frequencies, e.g., MIMO system.


#beamforming

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

LDPC Encoding and Decoding Techniques

📘 Overview & Theory 🧮 LDPC Encoding Techniques 🧮 LDPC Decoding Techniques 📚 Further Reading 'LDPC' is the abbreviation for 'low density parity check'. LDPC code H matrix contains very few amount of 1's and mostly zeroes. LDPC codes are error correcting code. Using LDPC codes, channel capacities that are close to the theoretical Shannon limit can be achieved.  Low density parity check (LDPC) codes are linear error-correcting block code suitable for error correction in a large block sizes transmitted via very noisy channel. Applications requiring highly reliable information transport over bandwidth restrictions in the presence of noise are increasingly using LDPC codes. 1. LDPC Encoding Technique The proper form of H matrix is derived from the given matrix by doing multiple row operations as shown above. In the above, H is parity check matrix and G is generator matrix. If you consider matrix H as [-P' | I] then matrix G will be...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What is a Chirp Signal?

📘 Overview & Theory 🧮 MATLAB Code 🧮 Chirp Signal Simuator 📚 Further Reading   Chirp signals are often used to find target objects. In a chirp signal, the frequency varies with time. For up-chirp signals, frequency increases with time. Oppositely, for down-chirp signals, the frequency decreases with time. Advantages of a chirp signal over a single-toned signal Better resolution Better Security The wide bandwidth of a chirp signal allows for capturing more detailed info about the target or object In a chirp signal, pulse compression enhances resolution by concentrating the signal energy into a shorter duration of time It is less susceptible to noise  It improves signal to noise ratio Up-Chirp Signal A sinusoidal up-chirp signal is denoted as Where A is the amplitude of this signal             f0 is the starting frequency of the chirp at t=0             Î± is the chirp rate or the...

Alamouti Scheme for 2x2 MIMO in MATLAB

📘 Overview & Theory 🧮 MATLAB Code for Alamouti Scheme 🧮 MATLAB Code for BER vs. SNR for Alamouti Scheme 🧮 Alamouti Scheme Transmission Table 📚 Further Reading    Read about the Alamouti Scheme first MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO % Clear any existing data and figures clc; clear; close all; % Define system parameters transmitAntennas = 2; % Number of antennas at the transmitter receiveAntennas = 2; % Number of antennas at the receiver symbolCount = 1000000; % Number of symbols to transmit SNR_dB = 15; % Signal-to-Noise Ratio in decibels % Generate random binary data for transmission rng(10); % Set seed for reproducibility transmitData = randi([0, 1], transmitAntennas, symbolCount); % Perform Binary Phase Shift Keying (BPSK) modulation modulatedSymbols = 1 - 2 * transmitData; % Define Alamouti's Precoding Matrix precodingMatrix = [1 1; -1i 1i]; % Encode and transmit data using Alamouti scheme transmittedSym...