Skip to main content

High Level and Low Level Modulation


High Level and Low Level Modulation

You know for wireless communication is suitable for long distance communication. In wireless, for data transmission modulation become essential to avoid interference and to reduce antenna size significantly. Especially, in modulation process, we translate the low frequency baseband signal to higher frequency by modulating with high frequency carrier signal. For a typical communication system we generate the high frequency (carrier) signal by using local oscillator. Source signal or message signal is modulated with local oscillator. Then modulated signal is transmitted thru antenna. 



Low Level Modulation

In low level modulation, message signal is modulated with local oscillator that produces high frequency. Then the frequency of message signal is translated to much higher frequency. Then the modulated signal passes thru wideband amplifier.



High Level Modulation

In high level modulation, source or message signal is passed thru wideband amplifier, then the signal is modulated with local oscillator.



What is Wideband Amplifier  

For often, signal is amplified in communication process so that signal can reach at receiver with acceptable energy level. For the name 'wideband amplifier' we can primarily guess that it can pass signal with large bandwidth. In case of modulation process, i.e., for amplitude modulation (AM), we know after modulation it contains upper side band and lower side band at both side of carrier frequency.  That posses large amount of bandwidth. So, it is essential to pass thru wideband amplifier so that all available frequencies can pass thru amplifier and get amplified.

 

MATLAB Code for Comparison of High Level and Low Level Modulation

 

 

Output








Frequency modulation of a voice signal

The voice ranges from 330Hz to 3.3kHz. We typically band restrict it to 4 kHz, or Fmax, for simplicity in mathematics.
According to the Nyquist Sampling Theorem, Sampling Frequency (Fs) must be greater than or equal to 2 Fmax (8 kHz) in order to prevent Aliasing.

Sampling frequency and carrier frequency are not the same.

By modulating, the baseband signal (also known as the original or unmodified signal) is moved to a higher frequency where it can be transmitted with a smaller antenna.
Sampling is a method for acquiring the baseband signal so that it can be reconstructed (if Fs >= 2Fmax) with the least amount of loss to the signal fidelity. It is impossible to restore a signal to its original form if it has been under-sampled.
The local oscillator on your SDR, which governs the frequency it covers, is controlled by the channel frequency. As a result, you are picking up signals between 16 KHz below and 16 KHz above 107.5 MHz. (Let assume the sampling frequency at FM radio station was 32 KHz).

You wish to search up a concept called heterodyning. When you modulate (multiply) a signal by a sine wave, the result is two copies of the signal that are separated in frequency space by the sine wave's frequency. Therefore, in your situation, you've instructed the local oscillator to run at 107.5MHz, which shifts the radio tower's 107.5MHz carrier to 0Hz and 215MHz even though the high frequency version is silenced by your radio's low pass filter. read more ...


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. cl...