Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks

IPv4 vs IPv6: Packet structures and difference between ipv4 and ipv6

 

What is the main difference between IPv4 and IPv6?


IPv4 was introduced in the 1970s. You may be aware that once we connect our devices to the internet, they are assigned a unique id. More specifically, when two routers begin communicating, they are assigned a unique IP address. Then our gadgets, such as PDAs, computers, and other mobile devices, connect to the internet via nearby routing devices. There could be a lot of intermediary routers in front of them. The main differences between IPv4 and IPv6 systems are discussed in this article. 


We know that IPv4 applications can still be used in IPv6 networks. Because the IPv6 system is backwards compatible with the IPv4 system. When you buy new hardware, it comes pre-configured with IPv6.



Difference in number of addressing bits in IPv4 vs. IPv6

IPv4 addresses are 32 bits long, while IPv6 addresses are 128 bits long. You may be aware that the number of internet-connected gadgets is currently 5-6 times the total number of people on the planet. To assign IP addresses to all devices, IPv4 is insufficient. On the other hand, the number of internet-connected gadgets is rapidly increasing. In this condition, IPv4 can only provide IP addresses to about 20% of the world's population.

IPv4 can only assign IP addresses to 2^(32) devices, however IPv6 can assign IP addresses to 2^(128) devices. If you tally up the numbers, you'll realize that we can assign IPv6 addresses to each and every sand particle in deserts. 



IPv4 vs. IPv6 Header Differences

The IPv4 header is 24 bytes long. We need only 8 bytes for source and destination addresses, and the remaining 16 bytes are used for 12 extra fields. The IPv6 header is only 40 bytes long. The source address is 16 bytes long, the destination address is 16 bytes long, and the header generation portion is 8 bytes long. In comparison to IPv4 networks, IPv6 networks employ a simpler header.



IPv6 has an auto-configuration feature

One of the most significant advantages is that IPv6 is auto-configurable. If you're familiar with IP addresses, you'll notice that devices connected to the same routers use the same prefixes. It is not auto-configurable for IPv4. In the case of IPv6, however, IP addresses are automatically assigned. In this situation, the router sends a prefix link, and connected devices are immediately assigned IP addresses with the same prefix.



IP addresses in IPv4 and IPv6 examples

IPv6 addresses are 128 bits long. Each sub block of the address block is split into eight sub blocks. Each portion has a 16-bit hexadecimal value. As an example,

Example of 128 bit IPv6 addresses 

2010:0BB8:0000:0000:1212:A3AA:0FEF:0714

The IP address given above can be written as

2010:BB8:0:0:1212:A3AA:FEF:714

2010:BB8: : 1212:A3AA:FEF:714

In IPv6, consecutive zeros can be replaced with "::" as illustrated above.


We've already talked abut that the IPv6 network system can still utilize IPv4 addresses. I'll show how IPv4 addresses are represented in IPv6 networks.

For instance, consider the IPv4 address 192.168.0.3. Then, with IPv6, it's referred as 

0:0:0:0:0:0:192.168.0.3

: : 192.168.0.3



How to find out what your internet-connected device's IP address is

When your device is connected to the internet, there are a number of websites where you can check your IP address. You may find your IP address by typing URL address "https://www.iplocation.net" into your browser.

What are the valid ipv6 addresses that can be used for communication across the Internet?




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

Channel Estimation utilizing Decision Feedback Equalizer (DFE)

  Channel estimation using DFE is a similar process to a non-linear equalization process. In DFE (decision feed equalizer), equalization error bits/symbols between the feedforward tabs and feedback taps are calculated continuously. And equalizer's tap weights tap weights are updated correspondingly.  In plain language, the error between the received bits and known training bits is calculated, and tap weights are updated accordingly. The equalizer estimates the channel impulse response (CIR) .  Once we find the channel impulse response or channel information, we can easily retrieve the original message signal from the noisy data. In the communication process, the whole system is modeled as a linear time-invariant (LTI) system. And  y = h*x + n where, y = received signal            x = transmitted signal           n = additive white Gaussian noise [Read more about the Linear time-invariant (LTI) system and convolu...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Hybrid Beamforming | Page 1

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | Hybrid Beamforming: Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming. Overview of hybrid beam forming with example: Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybr...

Constellation Diagram of PSK in Detail

        Fig 1: Constellation Diagram of PSK    In the above figure, the binary bit '1' is represented by S1(t) and the binary bit '0' by S2(t), respectively. So, energy of S1(t) = (√(Eb))2 = Eb So, energy of S2(t) = (-√(Eb))2 = Eb Distance between the signaling points, d12 = 2(√(Eb))   Energy per bit for binary '1' and binary '0'           High-order PSK (e.g., 8 PSK, 16 PSK) can transmit more bits per symbol but is more sensitive to noise. Low-order PSK (e.g., BPSK, QPSK) is less susceptible to noise. PSK modulation can be visualized using a constellation diagram, where each point represents a symbol. In the presence of noise, points may be away from the original positions, making them harder to distinguish.