Skip to main content

RMS Delay Spread, Excess Delay Spread and Multi-path ...



Delay Spread, Excess Delay Spread, and Multipath (MPCs)

The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths]


Multipath Components or MPCs:

The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of another.

Let me give you an example to help you understand. Let's assume we're sending an impulse signal from the transmitter. The single impulse response is transmitted to the receiver via LOS and NLOS pathways. The signal is only transmitted via NLOS paths if a LOS path is unavailable. The probability of LOS Communication decreases as the density of the region increases. Because there are numerous obstacles between the transmitter and the receiver, such as buildings, etc.   


Excess Delay Spread:

Excess delay spread is the arrival time difference between the first and final multipath components (MPCs) at the receiver side. For example, suppose the first multipath component arrives at the receiver at time t1, and the last multipath component arrives at time t2. The Excess Delay Spread will then be (t2 -t1).


Power Delay Profile:

The Power Delay Profile shows how received power changes with time dispersion or time delay caused by multipath in a wireless communication channel.

In the above equation, Ac denotes the multipath intensity profile. Ï„ denotes time delay, Î¼Tm denotes average delay spread. 

You can also think of Ac as a power profile that exponentially decreases over time as a multipath delay in time. 


RMS Delay Spread:

The RMS Delay Spread is the power delay profile's second central momentum. We all know that we get multipath components at the receiver end of the wireless communication process. As a result, to obtain the necessary data, we must use stronger multipath and then add them.   Then we divide the total value by the total weights. In the case of the power delay profile computation, power decreases exponentially with time.



Here, in the above equation, σTm denotes rms delay spread. It shows how the RMS delay spread relates to the average delay spread. Apart from the average delay spread, we take the square root value of the square of the difference between the average delay spread and the instantaneous delay spread of the multipath component. [Get MATLAB Code for RMS Delay Spread]
















Why is there significant multipath in the case of very high frequencies?

The signal traversal path is shorter at higher frequencies than at lower frequencies. As a result, cellular network coverage is limited in those situations. And there is little of a LOS component in a city or urban scenario. There are NLOS communication pathways available. When the frequency is very high. However, only a few more robust NLOS components reach the receiver. The rest of the NLOS components are lost in a congested metropolitan area due to repeated reflection and diffraction. Because path loss is directly proportional to the carrier frequency of the operational signal, higher frequencies experience more path loss.


Why RMS Delay Spread is essential for wireless Communication:

In today's wireless Communication, RMS delay spread is a critical characteristic. It depends on an area's physical constructions, like buildings, foliage, etc. There will be linear multipath components, or MPCs, whenever we transmit a signal in a wireless setting. We will receive many copies of the same single-sent impulse response. As a result, it takes some time for all MPCs of the transmitted impulse response to reach the receiver. If we broadcast the following signal immediately after the first, the MPCs of the first symbol cause interference on the receiving side. Because the receiver receives the next symbol and the MPCs of the first symbol. Inter-symbol interferences, or ISI, are the result of this. We broadcast signals at intervals ten times greater than the RMS delay spread to eliminate interference.


Why the Power Delay profile is essential:

The Power Delay Profile shows how received power varies with the time dispersion of MPCs. Only a few MPCs contain practically all abilities for high frequency. Only a few MPCs often carry nearly 80-85% of total energy for higher frequencies.


Now, we are continuously moving to higher frequency bands. You know these bands experience more reflection, scattering, etc. That results in more multipath. And multipath causes fading. And the type of fading tells us whether it is flat fading or frequency selective fading. Different multipaths reaches the receiver at different time. Higher frequency bands experience more Doppler spread as compared to lower frequency bands. You know 5G wireless technology is operating at millimeter wave band, so the Doppler effect will be huge. So, currently, researchers are focusing on the delay-doppler domain to mitigate the effect of Doppler delay spread.


MATLAB Code for calculating different types of delay spread

 

Output

Mean Delay Spread: 1.96 ns
RMS Delay Spread: 1.43 ns
Maximum Excess Delay: 4.00 ns


Also Read: 

 [1] Read more about RMS Delay Spread

[2] More about Channel Input Response (CIR)

[3] Difference between AWGN and Rayleigh Fading

[4] Saleh Valenzuela Channel Model for high frequencies communication

[5]  Impact of Rayleigh Fading and AWGN on Digital Communication Systems

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory of Pulse Amplitude Moduation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

Definition of the Fourier Series

  1. Introduction Most of the phenomena studied in the domain of Engineering and Science are periodic in nature. For instance, current and voltage in an alternating current circuit. These periodic functions could be analyzed into their constituent components (fundamentals and harmonics) by a process called Fourier analysis. A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. Fourier series is used to describe a periodic signal in terms of cosine and sine waves. In other words, it allows us to model any arbitrary periodic signal with a combination of sines and cosines.      Fig: Sine Wave       Fig: Triangular Wave    Fig: Sawtooth Wave      Fig: Square Wave   2. The common form of the Fourier series Sinusoidal functions are periodic over 2Ï€ angular distance. For a perio...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...