Skip to main content

RMS Delay Spread, Excess Delay Spread and Multi-path ...



Delay Spread, Excess Delay Spread, and Multipath (MPCs)

The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths]


Multipath Components or MPCs:

The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of another.

Let me give you an example to help you understand. Let's assume we're sending an impulse signal from the transmitter. The single impulse response is transmitted to the receiver via LOS and NLOS pathways. The signal is only transmitted via NLOS paths if a LOS path is unavailable. The probability of LOS Communication decreases as the density of the region increases. Because there are numerous obstacles between the transmitter and the receiver, such as buildings, etc.   


Excess Delay Spread:

Excess delay spread is the arrival time difference between the first and final multipath components (MPCs) at the receiver side. For example, suppose the first multipath component arrives at the receiver at time t1, and the last multipath component arrives at time t2. The Excess Delay Spread will then be (t2 -t1).


Power Delay Profile:

The Power Delay Profile shows how received power changes with time dispersion or time delay caused by multipath in a wireless communication channel.

In the above equation, Ac denotes the multipath intensity profile. Ï„ denotes time delay, Î¼Tm denotes average delay spread. 

You can also think of Ac as a power profile that exponentially decreases over time as a multipath delay in time. 


RMS Delay Spread:

The RMS Delay Spread is the power delay profile's second central momentum. We all know that we get multipath components at the receiver end of the wireless communication process. As a result, to obtain the necessary data, we must use stronger multipath and then add them.   Then we divide the total value by the total weights. In the case of the power delay profile computation, power decreases exponentially with time.



Here, in the above equation, σTm denotes rms delay spread. It shows how the RMS delay spread relates to the average delay spread. Apart from the average delay spread, we take the square root value of the square of the difference between the average delay spread and the instantaneous delay spread of the multipath component. [Get MATLAB Code for RMS Delay Spread]
















Why is there significant multipath in the case of very high frequencies?

The signal traversal path is shorter at higher frequencies than at lower frequencies. As a result, cellular network coverage is limited in those situations. And there is little of a LOS component in a city or urban scenario. There are NLOS communication pathways available. When the frequency is very high. However, only a few more robust NLOS components reach the receiver. The rest of the NLOS components are lost in a congested metropolitan area due to repeated reflection and diffraction. Because path loss is directly proportional to the carrier frequency of the operational signal, higher frequencies experience more path loss.


Why RMS Delay Spread is essential for wireless Communication:

In today's wireless Communication, RMS delay spread is a critical characteristic. It depends on an area's physical constructions, like buildings, foliage, etc. There will be linear multipath components, or MPCs, whenever we transmit a signal in a wireless setting. We will receive many copies of the same single-sent impulse response. As a result, it takes some time for all MPCs of the transmitted impulse response to reach the receiver. If we broadcast the following signal immediately after the first, the MPCs of the first symbol cause interference on the receiving side. Because the receiver receives the next symbol and the MPCs of the first symbol. Inter-symbol interferences, or ISI, are the result of this. We broadcast signals at intervals ten times greater than the RMS delay spread to eliminate interference.


Why the Power Delay profile is essential:

The Power Delay Profile shows how received power varies with the time dispersion of MPCs. Only a few MPCs contain practically all abilities for high frequency. Only a few MPCs often carry nearly 80-85% of total energy for higher frequencies.


Now, we are continuously moving to higher frequency bands. You know these bands experience more reflection, scattering, etc. That results in more multipath. And multipath causes fading. And the type of fading tells us whether it is flat fading or frequency selective fading. Different multipaths reaches the receiver at different time. Higher frequency bands experience more Doppler spread as compared to lower frequency bands. You know 5G wireless technology is operating at millimeter wave band, so the Doppler effect will be huge. So, currently, researchers are focusing on the delay-doppler domain to mitigate the effect of Doppler delay spread.


MATLAB Code for calculating different types of delay spread

 

Output

Mean Delay Spread: 1.96 ns
RMS Delay Spread: 1.43 ns
Maximum Excess Delay: 4.00 ns


Also Read: 

 [1] Read more about RMS Delay Spread

[2] More about Channel Input Response (CIR)

[3] Difference between AWGN and Rayleigh Fading

[4] Saleh Valenzuela Channel Model for high frequencies communication

[5]  Impact of Rayleigh Fading and AWGN on Digital Communication Systems

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Q-function in BER vs SNR Calculation

Q-function in BER vs. SNR Calculation In the context of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) calculations, the Q-function plays a significant role, especially in digital communications and signal processing . What is the Q-function? The Q-function is a mathematical function that represents the tail probability of the standard normal distribution. Specifically, it is defined as: Q(x) = (1 / sqrt(2Ï€)) ∫â‚“∞ e^(-t² / 2) dt In simpler terms, the Q-function gives the probability that a standard normal random variable exceeds a value x . This is closely related to the complementary cumulative distribution function of the normal distribution. The Role of the Q-function in BER vs. SNR The Q-function is widely used in the calculation of the Bit Error Rate (BER) in communication systems, particularly in systems like Binary Phase Shift Ke...

Wireless Communication Interview Questions | Page 2

Wireless Communication Interview Questions Page 1 | Page 2| Page 3| Page 4| Page 5   Digital Communication (Modulation Techniques, etc.) Importance of digital communication in competitive exams and core industries Q. What is coherence bandwidth? A. See the answer Q. What is flat fading and slow fading? A. See the answer . Q. What is a constellation diagram? Q. One application of QAM A. 802.11 (Wi-Fi) Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc. A.  Click here Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM? A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on  "Modulation Techniques" . Q.  Real-life application of QPSK modulation and demodulation Q. What is  OFDM?  Why do we use it? Q. What is the Cyclic prefix in OFDM?   Q. In a c...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...