Skip to main content

Optimal Precoding for Millimeter wave Massive MIMO Systems


 

Optimal Precoding for Millimeter wave Massive MIMO Systems

In case of MIMO system we deploy multiple transmitter antennas at receiver side and multiple receiver antennas at receiver side. MIMO technology was introduced to support multiple simultaneous data streams between transmitter and receiver to multiply the capacity of a system. But there is also interference between multiple data streams. Precoding technique minimizes the interference between multiple data streams. 



What Exactly Precoding Technique is

We all are familiar with the channel matrix of an MIMO system, that looks like, =


\      R1     R2     R3     R4

T1  h11    h12     h13   h14

T2  h21    h22     h23   h24

T3  h31    h32     h33   h34

T4  h41    h42     h43   h44


Here, in the above figure channel matrix, is shown. In channel matrix it shown different gains between different antennas. Now, we see in the above matrix for example, h11 represents the channel gain between transmitter antenna, T1 and receiver antenna, R1 and h11 also means connection between the antennas as well. R1 also receives the signals from T2, T3, and T4 antennas too. So, there is some kind of interface between multiple data streams when we process the signal at receiver side. Here, precoding help us to reduce interference between multiple data streams. 



Optimal Precoding in MIMO

Typically, received signal at receiver side is represented as,

y = Hx + n       .....(i)

Where, is channel matrix gain

y = Received signal vector 

= Transmitted signal vector 

= Additive white Gaussian noise

Here, in the above equation you can image channel matrix, as same as above channel matrix where we've shown channel gains between TX side antennas T1, T2, T3, T4, and receiver side antennas, R1, R2, R3, R4, respectively. We've also talked about interference with T1's signal at R1 antenna due to transmission from T2, T2, and T3. 

Now, let imagine your channel matrix looks like that, =


\       R1     R2     R3     R4

T1   h11     0        0         0

T2     0     h22      0        0

T3     0       0      h33      0

T4     0       0       0       h44


Now in equation (i), if you the put the above channel matrix value then you see there is no interference with T1' signal with T2, T3, and T4's transmission at receiver R1. 

Similar approach is performed for optimal precoding technique we channel matrix is decomposed in to two unitary matrix U, V, and one diagonal eigen value matrix, Î£. We've already talked about "Singular Value Decomposition in MIMO Channel" in a separate article. 

There is matrix, Î£we operate row and column matrix in a such way that Î£ becomes diagonal matrix where elements are in descending order. We do that by operating multiple operations in matrix as shown in the above mentioned article.

Generally, matrix is decomposed into, H = UΣVH

As and are unitary matrix so, multiplication of those matrix with its hermitian matrix itself are identity matrix. Alternatively, UUH = VVH = I



Signal Processing at Receiver Side for Optimal Precoding

During transmission we multiply original message signal vector with unitary matrix, V. So, now transmitted signal vector becomes, Vx. On the side at receiver side, received signal vector is multiplied with vector UH. So, as per above equation (i), received signal vector at receiver side as follows

y = UH (UΣVH) Vx + n

y= IΣIx + n

y = Î£x +n 

Now, you see Î£ is a diagonal matrix and signal vector, is multiplied with that diagonal matrix. So, you can observe there the simultaneous data streams between MIMO transmitter and receiver antennas without interference among them. Now we further do optimal power allocation to each antennas to maximize sum-rate or overall throughput as shown in a separate article. There is the URL link above.


# mimo beamforming

Why OFDM precoding modulation used in uplink?

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Bartlett Method in MATLAB

Steps to calculate Spectral power density using Bartlett Method 'M' is the length of each segment for the Bartlett method, set to 100 samples. 'K' is the number of segments obtained by dividing the total number of samples N by the segment length 'M'. psd_bartlett_broadband is initialized to store the accumulated periodogram. For each segment k, x_k extracts the k-th segment of the broadband signal. P_k computes the periodogram of the k-th segment using the FFT. The periodograms are accumulated and averaged over all segments. The PSD is plotted in dB/Hz by converting the power values to decibels using 10 * log10.   MATLAB Script clc; clear; close all; % Parameters fs = 1000; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector N = length(t); % Number of samples % Generate synthetic broadband ARMA process arma_order = [2, 2]; % ARMA(p,q) order a = [1, -0.75, 0....