Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Gaussian random variable and its PDF


Home / Wireless Communication / Gaussian random variable and its PDF



What exactly are Gaussian Random Variable and its PDF are


 The practical communication system is modeled as 

y = x + n;

Where y=received  signal 

x= transmitted signal 

n= noise


What is the significance of the Gaussian Random Variable?  

We know, especially for wireless communication, whenever we transmit a signal from transmitter to receiver, there will be some additive white Gaussian noise to the signal when we receive it from the receiver. The additive white Gaussian noise has some properties, like zero mean and a specific standard deviation. We learn later what exactly they mean, what Deviations are, and the relation of the Gaussian random variable with it. Here, the word "random" is used because noise is always unexpected in the communication system. We can't predict it before the transmission of the signal. But we can draw its probability distribution function (PDF) from several experiments or values. 



What exactly is Gaussian Random Variable PDF is

PDF of Gaussian random variable is defined as


Here, Ïƒ = Standard Deviation of random variable samples

μ = mean of random variable samples

In the above figure probability distribution function of the Gaussian random variable is shown. Students often need clarification with the title of the x label and y label. x tag defines the variation of the standard deviation value of Gaussian noise collected from large samples or populations or many experiments. After getting the standard Deviation of noise,e we plot the probability of standard deviations derived from large samples. 

You see values like, -10, -8, -6, ...., 0, +6, +8, and +10 on the x-axis. If you notice t, you can see that the probability of a standard Deviation of value 2 is around 0.18. Here actually, the likelihood of two times of standard deviation is 0.18. Similarly, the 2σ or 2 times the expected deviation probability is around 0.02.


Real-world mathematical examples to understand mean and standard Deviation

Mean of a Random Variable

As we have mentioned above, noise is random in a communication system. So, we take hundreds of values of that parameter and draw a PDF. For example, we have received ten random variables, i.e., X1, X2, X3, X4,..., X9, and X10. Then we calculate its mean or average. That is also meaningful.


Xmean = (X1 + X2 + X3+... +X8 +X9 +X10)/10


Standard Deviation of a Random Variable

In electronic communication, the standard signal deviation tells us how the signal varies over time. For example, we measure a signal in different time instants, from a different position, or at another aspect. Then we can calculate the standard Deviation to see how the signal varies. That value also matters for electronic devices. Similarly, we calculate the standard deviation value from many samples in the case of a Gaussian random variable. For example, in a class, marks obtained in math by students are as follows:

Student 1: 92 out of 100

Student 2: 85 out of 100

Student 3: 74 out of 100

Student 4: 70 out of 100

Student 5: 60 out of 100

Student 6: 66 out of 100

Student 7: 82 out of 100

Student 8: 63 out of 100

Student 9: 76 out of 100

Student 10: 59 out of 100


The average marks obtained by students are calculated as

=(92+85+74+70+60+66+82+63+76+59)/10

=72.7

The mean value is 72.7


Now, we'll calculate Standard Deviation,

Std or Ïƒ= sqrt{(1/(N-1) * Σ(Ni -N0)^2}

Here, N= total number of sample

Ni denotes the instantaneous value of  N

N0 denotes the mean of N

'sqrt' denotes 'square root' here


The standard Deviation for obtained marks by students is,

Std or Ïƒ =sqrt{1/(10-1) * Î£ (Ni -72.7)^2} 

(as here several samples or population is 10 & mean/avg. =72.7)

Or, Ïƒ = sqrt [1/9 * {(92-72.7)^2 + (85-72.7)^2 + (74-72.7)^2 + (70-72.7)^2 + (60-72.7)^2 + ... +(76-72.7)^2 + (59-72.7)^2}]

Or, Ïƒ = 10.57

Standard Deviation, in many cases defined as the notation Ïƒ (sigma). The standard Deviation (σ ) indicates how far a 'typical' observation deviates from the data's average or mean value, Î¼.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

BER vs SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in an AWGN channel is g

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK semilogy(EbNoVec_qpsk, ber_qpsk_theo, 's-', &#

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili

RMS Delay Spread, Excess Delay Spread and Multi-path ...

Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direct communication link between TX and RX. The other communication pathways are called non-line of sight (NLOS) paths. Reflection and refraction of transmitted signals with building walls, foliage, and other objects create NLOS paths. [ Read More about LOS and NLOS Paths] Multipath Components or MPCs: The linear nature of the multipath component signals is evident. This signifies that one multipath component signal is a scalar multiple of

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t