Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Gaussian random variable and its PDF


Home / Wireless Communication / Gaussian random variable and its PDF



What exactly are Gaussian Random Variable and its PDF are


 The practical communication system is modeled as 

y = x + n;

Where y=received  signal 

x= transmitted signal 

n= noise


What is the significance of the Gaussian Random Variable?  

We know, especially for wireless communication, whenever we transmit a signal from transmitter to receiver, there will be some additive white Gaussian noise to the signal when we receive it from the receiver. The additive white Gaussian noise has some properties, like zero mean and a specific standard deviation. We learn later what exactly they mean, what Deviations are, and the relation of the Gaussian random variable with it. Here, the word "random" is used because noise is always unexpected in the communication system. We can't predict it before the transmission of the signal. But we can draw its probability distribution function (PDF) from several experiments or values. 



What exactly is Gaussian Random Variable PDF is

PDF of Gaussian random variable is defined as


Here, Ïƒ = Standard Deviation of random variable samples

μ = mean of random variable samples

In the above figure probability distribution function of the Gaussian random variable is shown. Students often need clarification with the title of the x label and y label. x tag defines the variation of the standard deviation value of Gaussian noise collected from large samples or populations or many experiments. After getting the standard Deviation of noise,e we plot the probability of standard deviations derived from large samples. 

You see values like, -10, -8, -6, ...., 0, +6, +8, and +10 on the x-axis. If you notice t, you can see that the probability of a standard Deviation of value 2 is around 0.18. Here actually, the likelihood of two times of standard deviation is 0.18. Similarly, the 2σ or 2 times the expected deviation probability is around 0.02.


Real-world mathematical examples to understand mean and standard Deviation

Mean of a Random Variable

As we have mentioned above, noise is random in a communication system. So, we take hundreds of values of that parameter and draw a PDF. For example, we have received ten random variables, i.e., X1, X2, X3, X4,..., X9, and X10. Then we calculate its mean or average. That is also meaningful.


Xmean = (X1 + X2 + X3+... +X8 +X9 +X10)/10


Standard Deviation of a Random Variable

In electronic communication, the standard signal deviation tells us how the signal varies over time. For example, we measure a signal in different time instants, from a different position, or at another aspect. Then we can calculate the standard Deviation to see how the signal varies. That value also matters for electronic devices. Similarly, we calculate the standard deviation value from many samples in the case of a Gaussian random variable. For example, in a class, marks obtained in math by students are as follows:

Student 1: 92 out of 100

Student 2: 85 out of 100

Student 3: 74 out of 100

Student 4: 70 out of 100

Student 5: 60 out of 100

Student 6: 66 out of 100

Student 7: 82 out of 100

Student 8: 63 out of 100

Student 9: 76 out of 100

Student 10: 59 out of 100


The average marks obtained by students are calculated as

=(92+85+74+70+60+66+82+63+76+59)/10

=72.7

The mean value is 72.7


Now, we'll calculate Standard Deviation,

Std or Ïƒ= sqrt{(1/(N-1) * Σ(Ni -N0)^2}

Here, N= total number of sample

Ni denotes the instantaneous value of  N

N0 denotes the mean of N

'sqrt' denotes 'square root' here


The standard Deviation for obtained marks by students is,

Std or Ïƒ =sqrt{1/(10-1) * Î£ (Ni -72.7)^2} 

(as here several samples or population is 10 & mean/avg. =72.7)

Or, Ïƒ = sqrt [1/9 * {(92-72.7)^2 + (85-72.7)^2 + (74-72.7)^2 + (70-72.7)^2 + (60-72.7)^2 + ... +(76-72.7)^2 + (59-72.7)^2}]

Or, Ïƒ = 10.57

Standard Deviation, in many cases defined as the notation Ïƒ (sigma). The standard Deviation (σ ) indicates how far a 'typical' observation deviates from the data's average or mean value, Î¼.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MIMO, massive MIMO, and Beamforming

  The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via  beamforming  or directional transmission. 1. Some essential characteristics of a MIMO system 1.1. Spatial Division Multiplexing Access (SDMA) SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter. 1.2. Spatial Multiplexing Another essential ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Analog Beamforming vs Digital beamforming

Beamforming Techniques Analog vs Digital beamforming Page 1 | Page 2 | 1. Analog Beamforming: Beamforming is a method of focusing a signal in a certain direction to provide sufficient signal strength at the receiver end of the communication process. We normally require more than one closely located antenna to form a beam in a specific direction and focus the resultant signal from antennas to use beam forming. We can also use a phase shifter or PSs to control the phases of a signal. We employ MIMO (multiple input multiple output antenna) [↗]  to provide beam forming. In a MIMO system, antennas are normally positioned in a half-wavelength interval of the operating frequency. We commonly employ beam forming when we need to send a signal over a great distance (e.g., for radar communication) and omnidirectional transmission isn't feasible. On the other hand, we can use beam forming to extend the range of our signal without boost...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

Calculation of SNR from FFT bins

  Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined using a modified Bessel function of the first kind.    Steps Set up the sampling rate and time vector Compute the FFT and periodogram Plot the periodogram using FFT Specify parameters for Kaiser window and periodogram Calculate the frequency resolution and signal...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...