Skip to main content

NET & GATE : Communications (EC) Study Material


Home / Engineering & Other Exams / Communications (EC) Study Material ...

 

NET & GATE: Communications (EC) Study Material


What is an error in a communication system?

In wireless communication, we sometimes receive the wrong bit, i.e., the transmitter sends binary '1', but we're receiving binary '0' on the receiver side. That is called a bit of error. Now, we'll tell you why this error occurs. We are all aware of signal attenuation and additive noise in wireless communication. You also know that we use a threshold level at the receiver to detect '0' or '1'. Anyhow if the signal is much affected by attenuation or noise, then we receive binary '0' instead of '1' and vice versa.

We commonly use the term 'bit error rate' to measure bit error. Bit error rate tells us how many bits are affected among the total number of bits transmitted.


What are the possible remedies to reduce the bit error rate?

Channel Coding



Question

There is a digital communication system that sends a symbol or block of N bits. We expect the error probability in decoding to be 0.0001. But there is N number of bits in a symbol or block. And here, the occurrence of a mistake of any bit is independent of others. If we came to know at least one bit in the block/symbol has been decoded wrongly. Then what probability will the received symbol/block be erroneous?


Answer

Error probability of a bit = 0.0001

So, the probability of being decoded correctly= is 1-0.0001

As there are several bits, so correct probably = (1-0.0001)(1-0.0001)(1-0.0001)...Up To N Times

=(1-0.0001)^N

Erroneous Probability = 1 - correct probability

=1 -  (1-0.0001)^N

 


Maximum Likelihood Decoding or ML Decoding

The decision boundary between two adjacent signal points will be their arithmetic mean.


Question

The S symbol is randomly selected from the S1, S2, S3, and S4 and communicated through a digital communication system. S1=-3, S2=-1, S3=+1, and S4=+2 are given. Y = S + W is the received symbol on the receiver side. W stands for "zero mean unit variance." When the transmitted symbol S = Si, the conditional probability of symbol error for maximum likelihood (ML) decoding is P. P is a Gaussian Random Variable independent of S. The index i with the highest conditional symbol error probability Pi is -----


Answer

As an ML detector is used, the decision boundary between two adjacent signal points will be their arithmetic mean.

For S1= -3, the probability of error, P1,  

As the ML decoder first receives the symbol -3 and then -1, so -2 becomes the decision boundary, as shown in the figure below.



If the signal value lies between -∞ to -2, it is decoded correctly as -3. Otherwise, an error occurs. 

Now, the probability of error, P1 = (1 - yellow-colored area)


For S2, probability of error is P2 (say)


So, P2 = (1 - yellow-colored area)


For S3, probability of error is P3 (say)


P3=(1-yellow-colored area)


For S4, probability of error is P4 (say)


P4 = (1 - yellow-colored area)

In the concussion of the above four graphs, the probability of correctness is less for S3 among the four symbols. So, the possibility of error for S3 is more significant, or P3 is more considerable.


Probability & Information

When the probability of an event is less, then information about that event will be more. 

I(x) is inversely proportional to p(x)

When probability = 1, the information will be zero, and vice versa.

.We commonly use the term 'entropy' in information theory. Entropy denotes the average number of bits required per symbol to transfer information.

For example:

The probability of receiving bit '1' is 0.5 & probability of receiving bit '0' is 0.5 on the receiver side. Then the entropy H(x) is going to be    -0.5*log(0.5) -0.5*log(0.5) = 1 bit/symbol


Electronic Devices

pn junction diodes are used as electronic switches. Diodes only allow unidirectional current flow. When the voltage across the diode goes up to a certain amount (typically 0.7 V), it becomes on (in case of forward bias). On the other hand, reverse bias always remains 'off.' But in the case of the zener diode, if you continuously increase the reverse voltage, then the current flows accordingly. But after a specific reverse voltage, current flow rises sharply in reverse bias mode. This phenomenon is called 'avalanche breakdown.' If you try to increase the reverse voltage further, the voltage doesn't increase; only the current flow increases.

What is bias voltage?
The bias voltage is required for an electrical gadget to turn on and work.
An electronic device couldn't turn on and function without a bias voltage.

Networks, Signal, & Systems

 Superposition Theorem

In the superposition theorem, we calculate the individual response of each independent source on an element or branch. Then we sum up the voltage and current.


Thevenin's Theorem 

In Thevenin's theorem, we basically find the Vth and Rth. Procedure for thevenin's theorem

1. Firstly, we open the circuit, the load 

2. Then we find Vth across the load from the circuit

3. Then, we open the circuit's current source and short-circuit the voltage sources. Remember this step is only applicable to independent sources.

4. Then, we find Rth from the circuit.


RL circuit with source:

i(t) = [ i(0+) - i(∞)]*exp(-Rt/L) + i(∞)

v(t) = [ v(0+) - v(∞)]*exp(-t/RC) + v(∞)

The main functions of the inductor and capacitor in a circuit are to prevent the sudden change of current and voltage, respectively.

Question:

In the above circuit, when the switch is transformed from an off to an on state, the voltage across the capacitor will be the same, but the current direction of the capacitor will be reversed.  

A similar rule is applicable for inductors also. When the switch is transformed from an off to an on state, the voltage across the inductor will be exact, but the current direction will be reversed. 

Question:

Find the rate of rise of voltage across the  capacitor at t = 0+

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

  Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise. ASK Baseband ASK Passband        Fig 1:  Amplitude Modulation and Demodulation (Get MATLAB Code ) In Figure 1 above, you can see binary information bits are simply represented by carrier signals in the case of binary information '1'. That's why it is called baseband signal. Frequency Shift K...