1. Resistor
A transformer is a component that resists current flow. For example, you're probably aware that a smartphone runs on 3–4 volts. The smartphone's charger then converts the 220-volt AC to 5-6 volt DC. To step down the AC voltage to 5-6 volt DC at the charger, we'll need resistors, transformers, and capacitors.
2. Capacitor
It does not allow dc current to pass through circuits. Filtration, voltage storage, and ac to dc conversion are other primary roles. We all know that a capacitor prevents DC current from flowing. DC current can produce rippling in communication systems, degrading signal quality. As a result, it's critical to get the desired frequency through electronic circuitry. With the help of capacitors and inductors, we may pass high pass, low pass, or baseband signals as required.
3. Inductance
It stores currently. It Prevents sudden changes of current in the circuit. High inductance allows it to pass high frequency, and low inductance allows it to pass low frequency. When a source is connected to a resistor R, a capacitor C, and an inductor L, the overall impedance is, Z = √{R2 + (L2 – C2)} Remember that resistance, inductance, and capacitance are represented by R, L, and C, respectively.
4. Fuse
5. Diode
A diode permits current to travel in just one direction. As a result, the diode is frequently utilized as a rectifier. Switching is another function of a diode. AC current can be converted to DC current with the right combination of diodes and capacitors. We already know that a diode operates as a switch, passing the positive half-cycles of the AC supply and charging the capacitor. It also disables the AC supply's negative half. Capacitor discharges at that point. We obtain DC current at the output.
6. Transistor
It works as an electronic switch and amplifies the signal.
Also Read: Star to Delta Conversion and delta to star