Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks

5G : Challenges and Potential Solutions for 5G Communication



This article will cover a variety of 5G challenges and solutions. Although 5G has the potential to meet future high data rate and bandwidth demands, there are still some big difficulties to overcome in order to make 5G a reality. We're transitioning from 4G to 5G technology as the number of connected devices to the internet grows fast. The demand for IoTs (Internet of Things) and sensors is steadily increasing these days. For many years, connected vehicles, vehicle-to-vehicle communication (V2V), and vehicle-to-infrastructure (V2I) was a major concern. To connect a large number of devices to a base station, we need more bandwidth as compared to 4G to ensure that all devices can communicate smoothly. The 5G millimeter wave band, on the other hand, offers ample spectrum resources to meet the demands. Now we'll talk about 5G's difficulties and possible solutions:




Main challenges for 5G:


1. Due to the extremely high frequency, there is a significant path loss in omnidirectional EM wave transmission.


2. Due to the very short wavelength, there is a high penetration loss.


3. Interferences and infrastructures


4. Because the coverage zone is small, billions of APs are required.


5. Safety and Privacy




Possible Solutions:



Beam forming and directional transmission to combat high path loss:


As we know, extremely high frequency or millimeter waves suffer from significant path loss due to their high frequency and short wavelength, as they are easily absorbed by air gases, vapor, and other substances. As a result, such a high frequency wave can only travel a short distance through the atmosphere.


To maximize SNR at the receiver, we use directed transmission or beam forming. By using this techniques, extra gain is added, such as transmitter and receiver gains. In contrast, if we increase the strength at the transmitter or make the beam narrower, we can expect longer distance communication than before (without beam forming).


 

Microcell, APs to combat high penetration loss:


It can barely penetrate thick obstructions due to its high frequency and short wavelength. High frequencies, on the other hand, are more reflective and refractive. It is easily refracted or refracted by barriers such as building walls, glasses, and other objects.


As a result, connecting an outdoor node (in this case, a communication node) to an indoor node is problematic.


We can APs (access points) for indoor in this circumstance. Then we'll be able to link it to outside networks. APs can be used to make microcells. Then we can connect a macro cell to several microcells. The macro cell will then be connected to the BS, and the BS will be connected to the macro cell through backhauls.

 


Enabling device to device (D2D) communication and repeaters:


For this case, especially for microcell 5G communications, we can employ device to device communication (D2D) to obtain higher spectrum efficiency. Because such communication is ideal here because interference is reduced due to high path loss, and if beam forming is used, it is a significant benefit for D2D communication. You know, if we put APs everywhere, we'll need billions of them to connect (especially, for indoor communication node). To simplify the system, we can use repeaters to replace many APs. This is cost effective also.




Security & Privacy:


All users and personal data should be secure. 5G service providers have to ensure it. Hackers may have access to a large amount of data with high-speed and ubiquitous connections of 5G. That is something that 5G companies must keep in mind.


We also know that the beam forming technique effectively reduces the chances of eavesdropping and jamming (by jammer) at the local level.


Go to main menu ↑
























P 7

What is s11 and s21 of MIMO antenna

 

MIMO system was invented to increase the system's capacity. Here capacity of the system increases linearly with the number of antennas at transmitter and receiver increases. But there is a main issue arises in MIMO system is that interference between multiple antenna elements. 

MIMO is an important feature of Wi-Fi 4 and 5, as well as 3G and 4G cellular networks. This method was developed to improve the capacity of a channel by sending many data streams simultaneously over a single channel. In a MIMO system, all simultaneous data streams are encoded orthogonally multiplexed, which lowers interference. Massive MIMO is widely utilized in 5G to achieve large capacity and communicate via beam forming or directional transmission.

Here in MIMO systems we can use different types of diversity (time, space, and frequency diversity - three are three main type of diversity) to improve Quality of service (QoS) by reducing inter-element (antenna) interference. We can use different types of different types of polarization and pattern diversity, i.e., LP (linearly polarized antennas),  CP (circularly polarized antennas), etc. to cancel interference between MIMO antenna elements. That diversity techniques are widely used in WLAN systems. 

Diversity is a technique where, especially, in case of MIMO system, multiple antennas can enable multiple data streams between transmitter and receiver simultaneously. Now, interference occurs in that system if there is no diversity. We know in case of time diversity you can send multiple signals to multiple devices using different time slots. Similar thing happens in TDM (time division multiplexing) modulation system. You know in 2G GSM we use TDM to connect 8 devices to BS thru same channel by 8 different time slots. 


Now, we can also reduce interfaces between multiple antenna elements by using good inter element isolation. For that we need to design MIMO antenna elements accordingly so that we can achieve high gain.  That is also recommended for higher WLAN frequencies.

In case of designing MIMO antennas we generally get the terms like, S11, S21, S31, etc. Here, S21 represents the reflected signal power from element or antenna no 2 due to transmission from element or antenna 1. Obviously, that causes interference if the intensity is above  the acceptable level. Usually, isolation less than -20 dB is considered as good isolation for typical MIMO systems.   

Usually, transfer of power between antenna to antenna are measured in dB or decibel. It is a logarithmic scale. In our case it is 10*log(reflected power / total transmission power). Here base of the log is 10.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;...

Channel Estimation utilizing Decision Feedback Equalizer (DFE)

  Channel estimation using DFE is a similar process to a non-linear equalization process. In DFE (decision feed equalizer), equalization error bits/symbols between the feedforward tabs and feedback taps are calculated continuously. And equalizer's tap weights tap weights are updated correspondingly.  In plain language, the error between the received bits and known training bits is calculated, and tap weights are updated accordingly. The equalizer estimates the channel impulse response (CIR) .  Once we find the channel impulse response or channel information, we can easily retrieve the original message signal from the noisy data. In the communication process, the whole system is modeled as a linear time-invariant (LTI) system. And  y = h*x + n where, y = received signal            x = transmitted signal           n = additive white Gaussian noise [Read more about the Linear time-invariant (LTI) system and convolu...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Hybrid Beamforming | Page 1

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | Hybrid Beamforming: Hybrid beam formation was developed to address some of the limitations of digital pre-coding approaches. Every antenna element is connected to an RF chain in digital pre-coding (beam forming) method. We also know that each RF chain is in charge of providing a separate data stream between the transmitter and the receiver. We know that a larger number of independent data streams leads to higher data rates. It has a spatial multiplexing feature for MIMO. As a result, we may assume that switching from MIMO to massive MIMO will benefit us more in terms of spatial multiplexing in massive MIMO, where each antenna is coupled to a single RF chain. We'll proceed with a definition of hybrid beam forming. Overview of hybrid beam forming with example: Unlike digital beam forming, more than one antenna element is connected to a single RF chain in hybr...

Constellation Diagram of PSK in Detail

        Fig 1: Constellation Diagram of PSK    In the above figure, the binary bit '1' is represented by S1(t) and the binary bit '0' by S2(t), respectively. So, energy of S1(t) = (√(Eb))2 = Eb So, energy of S2(t) = (-√(Eb))2 = Eb Distance between the signaling points, d12 = 2(√(Eb))   Energy per bit for binary '1' and binary '0'           High-order PSK (e.g., 8 PSK, 16 PSK) can transmit more bits per symbol but is more sensitive to noise. Low-order PSK (e.g., BPSK, QPSK) is less susceptible to noise. PSK modulation can be visualized using a constellation diagram, where each point represents a symbol. In the presence of noise, points may be away from the original positions, making them harder to distinguish.