Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Wireless Communication Interview Questions | Page 2


 

Digital Communication (Modulation Techniques, etc.)

Importance of digital communication in competitive exams and core industries

Q. What is coherence bandwidth?

A. See the answer

Q. What is flat fading and slow fading?

A. See the answer.


Q. What is a constellation diagram?


Q. One application of QAM

A. 802.11 (Wi-Fi)


Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc.

A. Click here


Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM?

A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on "Modulation Techniques".


Q. Real-life application of QPSK modulation and demodulation


Q. What is OFDM? Why do we use it?


Q. What is the Cyclic prefix in OFDM?

 

Q. In a constellation diagram, which parameters are dominant to resist noise?

A. (1) Euclidian distance between constellation points. As Euclidian distance decreases, the effectiveness of noise increases. 

    (2) Signal-to-noise ratio per bit, or in plain language, power of each constellation point or transmitted power. 


Q. What does Quantization actually do in a communication system/process?

A. Quantization helps produce finite signal levels rather than infinite levels.


Q. Key performance measures of bandpass modulation schemes are

A. Low pass, band pass, and high pass are three terms that may be significant. We use LPF, where the effective signal frequencies are below a specific frequency. For a high-pass signal/filter, the opposite is true. In this case, we're only interested in higher frequencies of a threshold frequency. Now, bandpass signals are signals whose operational frequency is limited to a specific range, such as f1 MHz to f2 MHz. This differentiates it from the other two categories.


Bandpass modulatiModulation in the majority of the modulations. In the context of eavesdropping, this property is quite helpful.



Q. Five applications of Ask in digital modulation techniques

A. Off-on keying is another name for it. The transmitter uses this technology to send a signal fluctuating in amplitude or volts. It usually needs power to send bit '1' and nearly little energy to send bit '0.' ASK is used because it is simple to generate and has less complex circuitry. The following are a few examples of ASK applications:

1. Radio frequency (RF) applications at low frequencies

2. Wireless communication between base stations

3. Devices for industrial networks



Q. Compression modulation techniques

A. The pulse compression approach sends the signal through a matching filter. A matched filter is a linear filter with a maximized signal-to-noise ratio.



Q. Why is it important to have voice and tone modulation

A. ModulatiModulation conversion of a low-frequency baseband signal to a high-frequency signal using a high-frequency carrier wave. Because sending a baseband signal might cause severe interference with other baseband signals if everyone sends unmodulated baseband signals, we employ modulatiModulation the signal wirelessly transferable. In some instances, though, the antenna size could be a few kilometers if we do not use modulatiModulation. You know, human voice signal has many frequencies up to 4 KHz. Keep in mind that the human voice signal has more than one frequency. A signal is described as a single tone if it has only one frequency. However, if a signal contains many frequencies, we must modulate all of those frequencies. The modular modulation is referred to as 'multi-tone modulation.'



Q. Difference between modulated and unmodulated signal

A. The term "modulated signal" refers to a signal modulated using a high-frequency carrier signal.

In the case of wireless communication, modulatiModulationial. We modulate the signal to make it a bandpass signal. As a result, there is less interference with other signals. Modulation, on the other hand, allows signal transmission to be multiplexed. As a result, even in wired communication, modulatiModulationsionally is used to convey multiple data streams simultaneously.


Q. the basic rules to be maintained for modulation's primary purposes have already been discussed, such as antenna size reduction, signal multiplexing, etc. Signals are modulated with I and Q carriers in general, according to the basic rule of modulatiModulationtters "I" and "Q" stand for "in-phase modulation" and "quadrature modulation," respectively. We modify the data streams with varying amplitudes and phases in QAM (quadrature amplitude modulation).



Q. By doing modulation, audio can be sent to which distance

A. In general, modular modulation sends a signal for various purposes. Because the frequency of a modulated signal is substantially greater than that of an unmodulated signal, unmodulated signals may travel longer distances than modulated signals. The transmission distance is a different question that is determined by various factors.


Q. Which type of questions can be asked in competitive exams on modulatiModulatione difficulty of the exam questions might range from simple to complex. You may be asked what modulatiModulation Modulation hot topics include QPSK and QAM. On the other hand, you can be questioned about modulation techniques utilized in contemporary 4G and 5G communication technology.


Q. Which modulation technique has the highest Bandwidth?

A. For Amplitude modulation

Bandwidth of DSB => 2fm (fm=frequency of Message Signal)

For SSB-SC => fm

For VSB => Slightly greater than SSB-SC due to additional guard band

For Frequency modulation and Phase modulation,

Bandwidth => 2(β +1)fm (β = ratio of deviation of the carrier signal to the variation of modulating signal)


Q. If modulatiModulationdone, can we get information from different calls

A. Firstly, try to understand the primary purpose of modulatiModulation. Explain with an example. In the case of 2G GSM, each channel is of 200 KHz bandwidth, and eight users can be connected to the base station or cell tower simultaneously through the same channel. They use a TDM scheme to connect eight users simultaneously. We have already mentioned in the chapter on 'Modulation' that one of the primary purposes of modulation techniques is to multiplex the data by providing different independent and simultaneous data streams.

Q. Modulation and demodulation techniques in DCT

A. DCT is used in image processing, whereas DCT is used for simplification in calculation. DCT is taken as the basis function, and then the image's DCT transform and filters' DCT transform are multiplied. As we know, in the case of the convolution of two parts, we can bear the Fourier transform of those functions. Here in DCT, it gives us an advantage in simplification in calculation. 

Q. Discuss about compression modulation techniques

Q. What is the high data transfer rate in modulatiModulationodulation technique using analog input signal
A. Baseband analog signals are input in analog modulation techniques such as amplitude modulation, frequency modulation, and phase modulation. The input message signal is modulated using a high-frequency carrier wave.

Q. Why should we add carrier signal to modulated wave to generate modulated wave?

Q. How do we overcome the limitations of underwater wireless communication?

Q. What are the deductions made before handover in wireless communication?

Q. Wireless channels are more prone to bit error than wired channels

Q. Wireless channels are more prone to bit error than wired channels

Q. What is used to measure the reliability of communication channels?

Q. How does channel bandwidth offset communication?
A. To overcome interference between two signals, it is common practice in wireless communication to slightly vary the signal by frequency, phase, or amplitude.

Q. What are the salient features of base modulation?

Q. Coded Modulation technique needs Bandwidth when compared to ordinary Bandwidth?

Q. Do pulse modulation techniques use more power?

Q. 


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

ULA Arrays and Their Array Response

  The array response vectors for uniform linear arrays (ULA) with elements, N are represented as       Similarly, for Uniform Planer arrays (UPA), the array response vectors can be represented as,        Where 0 ≤ x ≤ W 1 -1 and 0 ≤   y ≤   W 2 -1         Fig : Directional cosine vectors at each antenna element       In figure above, it is illustrated that when transmitted signal reaches at receiver it creates different path lengths at different antenna element. Here in figure the second ray creates path-length difference of dcosθ with the first element. As there will be phase difference for same angle of departure (AOD) rays transmitted from Tx side. The corresponding calculation of phase difference is shown in figure.

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Frequency Bands : EHF, SHF, UHF, VHF, HF, MF, LF, VLF and Their Uses

Frequency Bands EHF, SHF, UHF, VHF, HF, MF, LF... 1. Extremely High Frequency (EHF)30 - 300 GHz Uses 5G Networks 5G millimeter wave band , 6G and beyond (Experimental) RADAR, 2. Super High Frequency (SHF)3 - 30 GHz Uses Ultra-wideband (UWB , Airborne RADAR, Satellite Communication, Microwave Link Communication or SATCOM 3. Ultra High Frequency (UHF)300 - 3000 MHz Uses Satellite Communication, Television, surveillance, navigation aids Also, read important wireless communication terms 4. Very High Frequency (VHF)30 - 300 MHz Uses Television, FM broadcast, navigation aids, air traffic control, 5. High Frequency (HF)3 - 30 MHz Uses Telephone, Telegram and Facsimile, ship to coast, ship to aircraft communication, amateur radio, 6. Medium Frequency (MF)300 - 3000 KHz Uses coast guard communication, direction finding, AM broadcasting , maritime radio, 7. Low Frequency (LF)30 - 300 KHz Uses Radio beacons, Navigational Aids 8. Very Low Frequency (VLF)3 - 30 KHz

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

Relationship between Gaussian and Rayleigh distributions

Wireless Signal Processing Gaussian and Rayleigh distributions ... 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution. Any wireless communication diagram will show the addition of AWGN noise as the signal travels through the channel. Due to its independence from operating frequency, it is known as AWGN, or additive white Gaussian noise. To determine the noise in a signal, we compute noise power density, or noise power / Hz (here, bandwidth in Hz). It mostly serves to represent real-valued random variables whose distributions are unknown in the scientific and social sciences. It has a bell shape. According to the theory of a Gaussian random variable, under certain circumstances, the average of numerous samples (observations) of a random variable with a finite mean and variance is itse

Calculation of SNR from FFT bins

  Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined using a modified Bessel function of the first kind.    Steps Set up the sampling rate and time vector Compute the FFT and periodogram Plot the periodogram using FFT Specify parameters for Kaiser window and periodogram Calculate the frequency resolution and signal power Exclude the