Skip to main content

Optimal Power Allocation in MIMO Transmission using SVD


 SVD-Based MIMO Transmission & Optimal Power Allocation



Optimal power allocation is defined as in a MIMO communication system we need to allocate more power to an independent stronger path and allocation of less power to a weaker path. By following this method we can achieve high throughput. Firstly, we talk about SVD-based MIMO. Then we discussed step by step how to find stronger or weaker communication paths between two MIMO antennas. 


Channel Matrix,



Let's assume, the first column in the above matrix is c1  .  c  and    c

are the 2nd and 3rd columns, respectively.


Here, columns are orthogonal for instance, i.e.,  c1Hc=0

Here, r=3, t=3  (r=number of Rx antenna; t=number of Tx antenna)


Now, c1


c2





Now, c1Hc2

 *



=0


Multiplication is 0 since the columns are orthogonal.



Step 1: We normalize each column

We get, H=


Here singular values are not in decreasing order.


Step 2: Now we arrange the singular values in decreasing order


H=



 



That implies,





Again assume, the first matrix is (unitary matrix), the middle one is Σ (eigenmatrix)and 3rd matrix is (unitary matrix).

Alternatively, UUH=I,     VHV=VVH=I


Σ =





In the above matrix, σ1=√52, σ2=√13, σ3=2, and Singular values are in decreasing order.


At receiver side   

            y ̃UHy =

           





At the transmitter side

  ͞x =V x ̃

Or,




Here, notation "x1~, x2~, x3~" represents original message signal vector


Transmit pre-processing or precoding at the receiver side

ỹ= Σx̃ + w̃

Or,




Here, "y~" represents the received signal vector and "w~" represents the noise vector


Now, 3 decoupled channel spatial multiplexing are as follows

ỹ1 = √52x̃1 + w̃1

ỹ2 = √13x̃2 + w̃2

ỹ3 = 2x̃3 + w̃3


Optimal Power allocation

To maximize sum-rate and to achieve the Shannon capacity,

P1=(1/λ- σ212)= (1/λ- σ2/52)

P2=(1/λ- σ222)= (1/λ- σ2/13)

P3=(1/λ- σ232)= (1/λ- σ2/4)

 

Consider the noise power, σ2= 0dB

                                         So, 10log10 σ2=0

                                              σ2=10^(0/10)=1

let P=total power=3dB

                  So, 10log10 P=3

                                      P=10^(3/10)=2 (approx.)

 

So, we must have

                 P1+P2+P3= 2

                (1/λ-1/52)+  (1/λ-1/13)+  (1/λ-1/4)=2

               Or, 1/λ=.7821

Now,

P1=10log10(1/λ- σ2/52)= 10log10(0.7821- 1/52)=-1.1755 dB

P2=10log10(1/λ- σ2/13)= 10log10(0.7821- 1/13)=-1.517 dB

P1=10log10(1/λ- σ2/4)= 10log10(0.7821- 1/4)=-2.74 dB

Power allocation decreases as gain σ2 decreases. So, we can say poor power to poor channel , more power to strong channel.



People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html 📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Simulator for ASK, FSK, and PSK Generation 🧮 Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) 📚 Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need...

MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for Constellation diagrams of ASK, FSK, and PSK 📚 Further Reading   MATLAB Script % The code is developed by SalimWireless.Com clc; clear; close all; % Parameters numSymbols = 1000; % Number of symbols to simulate symbolIndices = randi([0 1], numSymbols, 1); % Random binary symbols (0 or 1) % ASK Modulation (BASK) askAmplitude = [0, 1]; % Amplitudes for binary ASK askSymbols = askAmplitude(symbolIndices + 1); % Modulated BASK symbols % FSK Modulation (Modified BFSK with 90-degree offset) fs = 100; % Sampling frequency symbolDuration = 1; % Symbol duration in seconds t = linspace(0, symbolDuration, fs*symbolDuration); fBase = 1; % Base frequency frequencies = [fBase, fBase]; % Same frequency for both % Generate FSK symbols with 90° phase offset fskSymbols = arrayfun(@(idx) ...     cos(2*pi*frequencies(1)*t) * (1-idx) + ...     ...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

  Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise. ASK Baseband ASK Passband        Fig 1:  Amplitude Modulation and Demodulation (Get MATLAB Code ) In Figure 1 above, you can see binary information bits are simply represented by carrier signals in the case of binary information '1'. That's why it is called baseband signal. Frequency Shift K...