Skip to main content

Optimal Power Allocation in MIMO Transmission using SVD


 SVD-Based MIMO Transmission & Optimal Power Allocation



Optimal power allocation is defined as in a MIMO communication system we need to allocate more power to an independent stronger path and allocation of less power to a weaker path. By following this method we can achieve high throughput. Firstly, we talk about SVD-based MIMO. Then we discussed step by step how to find stronger or weaker communication paths between two MIMO antennas. 


Channel Matrix,



Let's assume, the first column in the above matrix is c1  .  c  and    c

are the 2nd and 3rd columns, respectively.


Here, columns are orthogonal for instance, i.e.,  c1Hc=0

Here, r=3, t=3  (r=number of Rx antenna; t=number of Tx antenna)


Now, c1


c2





Now, c1Hc2

 *



=0


Multiplication is 0 since the columns are orthogonal.



Step 1: We normalize each column

We get, H=


Here singular values are not in decreasing order.


Step 2: Now we arrange the singular values in decreasing order


H=



 



That implies,





Again assume, the first matrix is (unitary matrix), the middle one is Σ (eigenmatrix)and 3rd matrix is (unitary matrix).

Alternatively, UUH=I,     VHV=VVH=I


Σ =





In the above matrix, σ1=√52, σ2=√13, σ3=2, and Singular values are in decreasing order.


At receiver side   

            y ̃UHy =

           





At the transmitter side

  ͞x =V x ̃

Or,




Here, notation "x1~, x2~, x3~" represents original message signal vector


Transmit pre-processing or precoding at the receiver side

ỹ= Σx̃ + w̃

Or,




Here, "y~" represents the received signal vector and "w~" represents the noise vector


Now, 3 decoupled channel spatial multiplexing are as follows

ỹ1 = √52x̃1 + w̃1

ỹ2 = √13x̃2 + w̃2

ỹ3 = 2x̃3 + w̃3


Optimal Power allocation

To maximize sum-rate and to achieve the Shannon capacity,

P1=(1/λ- σ212)= (1/λ- σ2/52)

P2=(1/λ- σ222)= (1/λ- σ2/13)

P3=(1/λ- σ232)= (1/λ- σ2/4)

 

Consider the noise power, σ2= 0dB

                                         So, 10log10 σ2=0

                                              σ2=10^(0/10)=1

let P=total power=3dB

                  So, 10log10 P=3

                                      P=10^(3/10)=2 (approx.)

 

So, we must have

                 P1+P2+P3= 2

                (1/λ-1/52)+  (1/λ-1/13)+  (1/λ-1/4)=2

               Or, 1/λ=.7821

Now,

P1=10log10(1/λ- σ2/52)= 10log10(0.7821- 1/52)=-1.1755 dB

P2=10log10(1/λ- σ2/13)= 10log10(0.7821- 1/13)=-1.517 dB

P1=10log10(1/λ- σ2/4)= 10log10(0.7821- 1/4)=-2.74 dB

Power allocation decreases as gain σ2 decreases. So, we can say poor power to poor channel , more power to strong channel.



People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2πfn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2π/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / τ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) τ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and τ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...