Skip to main content

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection



UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi).

Key Features of UWB Bands

  • UWB in order to bring decimeter-level positioning to the market
  • There is almost no interference with other radio communication systems
  • Multipath signal propagation resistance 
  • resistance to noise 
  • Low-power transceiver required


Ultra Wide Band or UWB comes under the Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz.

UWB frequency range: 3.1 GHz to 10.6 GHz

Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field communication), and serves a variety of security services. etc. We need more spectral resources or bandwidth to meet the constantly expanding data traffic demands. On the other hand, wireless communication is gaining popularity in the industrial setting, particularly for industrial automation. The spectral resource of very high frequencies, such as ultra-wideband and millimeter wave, is huge. But unfortunately, it cannot be used with Wi-Fi to some limitations in UWB transmission.

In 1960, the ultra-wideband (UWB) was invented. This band is ideal for communication over short distances. As a result, it can be used for both indoor and short-range outdoor communication. Because of its larger bandwidth and reduced latency, it is suitable for industrial automation.


Here, in the above figure, it is shown that GSM uses a bandwidth of 200 KHz. But it uses maximum energy among the three compared communication bands to overcome the noise level. But in the case of UWB, it transmits less power for short-range communication. As here communication range is limited, so it hardly interacts with other networks. But we can experience high data rate communication here because the available bandwidth is huge.
What is the significance of Ultra Wide Band (UWB)

The difference between a communication band's highest and lowest frequencies is used to compute electronic communication bandwidth. The ratio of the highest frequency to the lowest operating frequency in a communication band is substantially higher in a wideband transmission. Similarly, the signal is described as a narrow band if the highest to lowest frequency ratio is close to one.

The highest operational frequency for UWB transmission is much higher than the lowest operating frequency. UWB signals are sent as narrow pulses ranging up to a few picoseconds. As a result of the narrower pulses, it implies operating at higher frequencies. As a result, there is plenty of scope for high bandwidth allocation because it is wideband.
Why Choose Ultra Wide Band (UWB)

There are several compelling reasons to use UWB for modern wireless communication. The following are the reasons:

1. Huge spectrum resource

2. When two UWB devices get close together, they begin to range.

3. High positional precision

4. Can detect angle of arrival (AoA) and angle of departure (AoD)


1. Huge spectrum resource:

UWB systems transmit signals in the form of pulse pattern radio-based technology in the time domain. UWB band's frequency span 3.1 to 10.6 GHz. We transfer very narrow pulses in the time domain, so it contains huge bandwidth. In the following paras, we've discussed about the energy efficiency of UWB. We've already discussed in the above para that ultra-wideband communication is wideband communication itself because its highest operating frequency is much higher than the lowest operating frequency. So, here available spectrum resources are huge.


2. Live tracking (positioning) Property of Ultra Wide Band (UWB):

UWB is used in tracking devices like the -- Apple Air-Tag, Samsung galaxy smart Tag plus, etc. Keyless entry technologies (e.g., RFID) or digital key technologies are adopting ultra wideband or UWB.

Currently, UWB operates in the 3–10 GHz spectrum. The positioning accuracy of this band is great. Because the wavelength is so short, it provides a higher detection resolution of objects. As a result, when two UWB devices get close enough, they start ranging. The ranging is done using time of flight (ToF), which is the amount of time it takes for packets to perform a round trip between initiator and responder devices. It can track devices in real-time, improving the connection's reliability.

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

 There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 1. Equal gain combining method We add the correlated data streams from different antennas in the equal gain combining method. Then we multiply the resultant data with (1/(number of antennas)) For example, for two antenna gain-combining  If the received symbols are y1 and y2, then  Equal combing gain, y_egc = 0.5 * (y1 + y2) 2. Maximum ratio combining method We multiply the individual data streams with weights in the maximum ratio combining method. More weightage is multiplied by those data streams with maximum {|h|^2}, where h denotes the channel impulse response. And less weightage is multiplied by those data streams with corresponding small value of  {|h|^2}.  Then we sum the data streams to improve SNR. In the case of Maximum Ratio Combining, if y1 an...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  Key Points For Binary Amplitude Shift Keying (BASK), binary bit '0' can be represented as lower level voltage or no signal and bit '1' as higher level voltage.  For Binary Frequency Shift Keying (BFSK), you can map binary bit '0' to 'j' and bit '1' to '1'. So, signals are in phase.  A phase shift of 0 degrees could represent a binary '1...

MATLAB code for GMSK

  Copy the MATLAB code from here  % The code is developed by SalimWireless.com clc; clear; close all; % Parameters samples_per_bit = 36; bit_duration = 1; num_bits = 20; sample_interval = bit_duration / samples_per_bit; time_vector = 0:sample_interval:(num_bits * bit_duration); time_vector(end) = []; % Generate and modulate binary data binary_data = randi([0, 1], 1, num_bits); modulated_bits = 2 * binary_data - 1; upsampled_signal = kron(modulated_bits, ones(1, samples_per_bit)); figure; plot(time_vector, upsampled_signal); title('Message Signal'); % Apply Gaussian filter filtered_signal = conv(GMSK_gaussian_filter1(bit_duration, samples_per_bit), upsampled_signal); filtered_signal = [filtered_signal, filtered_signal(end)]; figure; plot(filtered_signal); title('Filtered Signal'); % Integration & GMSK modulation integrated_signal = cumsum(filtered_signal); gmsk_signal = exp(1i * integrated_signal); % Plotting the real and imaginary parts of the GMSK signal ...