Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

1G to 5G Technology - Evolution of Wireless Generations


Mobile Wireless Generations Specifications
 1G  Voice, Analog traffic, FDMA
 2G  Voice, SMS, CS data transfer, TDMA
 3G  Voice, SMS, PS data transfer, CDMA
 4G  PS data, VOIP, OFDMA
5G OFDMA, NOMA, Beamforming

 

1G

We've all heard about the evolution of G's, or, to put it another way, the evolution of wireless cellular networks from 1G to 5G. 1G (the first generation of wireless networks) was introduced in 1981. Only voice communication (by analog signals) was supported in 1G. It was able to handle a data rate of 2.4 kbps). There was no data communication. AMPS (Advanced mobile phone system), NMTS (nordic mobile phone system), TACS (total access communication system), etc. were the most popular 1G-access technologies at that time. 



2G

2G was launched in the mid-1990s, providing PSDN or data communication as well as voice communication. The predecessor technology, 1G, is also referred to as analog. However, on 2G, we were able to communicate via voice and data at 64 kbps. 2G was the first generation of telecommunications that provide internet browsing capabilities. However, the data rate was merely adequate for browsing. New variants of 2G were introduced, such as 2.5G, 2.75G, and so on. The issue with 2G was that it did not meet international standards. In the context of low data rate, higher handover latency, limited capacity of cells, data roaming, etc. - we see several issues in 2G. GSM (global system for mobile communication), CDMA (code division multiple access), IS-95, etc. were the popular 2G access technologies at that time.


2G Modulation Techniques:

Frequency division multiplexing (FDM) and time division multiplexing (FDM) modulation techniques were primarily used in 2G. 2G distributes the entire available frequency spectrum into multiple subbands using FDM. Then, to link many devices, TDM is used for each subband. read more ...


Frequency bands for 2G:

GSM stands for Global System for Mobile Communications. The operating frequency ranged from 900 to 1800 MHz. We've probably all heard about uplink and downlink in 2G or other networks. The frequency band utilized to transfer signals from a mobile station (MS) to a base station is referred to as the uplink frequency (BS). Downlink frequency refers to the frequency utilized to convey data or signals from the BS to the MS.


Bandwidth:

Each channel in 2G has a bandwidth of 200 kHz and is modulated using TDM. We know that we can connect multiple MSs to a single channel using this technique. Using TDM, 2G GSM can connect 8 users simultaneously over a single channel.


The cell coverage of 2G GSM:

Previously, there was the idea of a big cell tower that could transmit its signal over a large area. You can assume that a tall transmitter is located in the center of a city and that it covers the entire area. For example, in 1946, the wireless mobile signal was sent in this manner in New York City. Only 543 users could be added to the network. We couldn't reuse the frequency with that technology.  However, as time went on, the number of users grew rapidly. Then there was the cellular (cellular network) concept. In a cellular 2G GSM network, we can reuse frequencies in cell towers when they are not too close or when interference is minimal. This allowed us a lot of flexibility in terms of connecting multiple devices at once.


Doppler Shift:

In a 2G network, Doppler shift is an inevitable parameter. When MSs travel closer to the BS or cell tower, the received frequency increases. When MSs move away from cell towers, on the other hand, the frequency of received signals decreases. It can be stated mathematically as a Doppler shift, 

It can be stated mathematically as a Doppler shift, 

fD = (v/lambda) * cos(theta), 

where v is the user's velocity and lambda is the operating frequency's wavelength. And theta = angle between BS and MS (theta)

read more ...



3G

The 3G connection became accessible later in 2001. 3G was the first wireless upgrade to bring online multimedia, video conferencing, and other features to the market. A 3G connection proved sufficient for internet video streaming. The main motivation behind 3G technology was to overcome the bandwidth limitation of 2G. WCDMA, CDMA2000, UMTS, etc. were the most popular 3G access technologies at that time. Primarily, 3G was able to handle a data transfer rate of 3.5 Mbps. Later on, we see different extensions of the third-generation network, like, HSDPA, HSUPA, HSPA+, etc. 



4G

In 4G, we observe data speeds of 30-40 Mbps that are satisfactory. However, the number of internet-connected devices is growing every day. 4G was designed to handle a data transfer rate of 300Mbps along with QoS (quality of service). According to Cisco, there will be 50 billion gadgets linked to the internet worldwide by 2020.

As a result, more bandwidth is required to connect more devices to the BS at the same time, and the need for high data rates is increasing. We are now accustomed to learning from video rather than text, such as high-definition video streaming, video conferencing, and so on. These applications necessitate a high data transfer rate.

4G is currently experiencing bandwidth congestion. The amount of data traffic generated by various wireless devices is increasing every day. So, either modern 4G is incapable of managing it, or the bandwidth of recent 4G LTE is insufficient to connect all devices to the internet at the same time. More bandwidth is required. 5G can help us with this.



5G

5G will, as we well know, operate at incredibly high frequencies ranging from sub 6 GHz band to millimeter wave band (26 to 100 GHz). It has a large spectrum of resources. Extremely high frequencies, massive MIMO, and beamforming are crucial 5G technologies that will address future telecom network needs or demands. Read More about 5G in detail...

That are also key technologies for 6G, and beyond. Sub-terahertz frequencies are expected to be used for 6G.


Also read about

[1] Wireless Communication Projects/Thesis Ideas

Q. What type of multiplexing is widely used in the second-generation (2g and third-generation (3g wireless communication?

A. TDM, FDM, CDMA, WCDMA

Q. What is the typical power range of an LTE signal received on a mobile device?

A. The typical range of received LTE signal's average power is between -44 dBm (excellent) to -140 dBm (bad).

#how cellular communication is different from radio communication? 

What is the communication method that uses symbolic codes for data transmission?

A. Telegraphy. It uses Morse code.

Short note on the evolution of wireless generation of 1g 2g 3g 4g 5g

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

FFT Magnitude and Phase Spectrum using MATLAB

MATLAB Code clc; clear; close all; % Parameters fs = 100;           % Sampling frequency t = 0:1/fs:1-1/fs;  % Time vector % Signal definition x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t); % Compute Fourier Transform y = fft(x); z = fftshift(y); % Frequency vector ly = length(y); f = (-ly/2:ly/2-1)/ly*fs; % Compute phase phase = angle(z); % Plot magnitude of the Fourier Transform figure; subplot(2, 1, 1); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude of Fourier Transform'); grid on; % Plot phase of the Fourier Transform subplot(2, 1, 2); stem(f, phase, 'b'); xlabel('Frequency (Hz)'); ylabel('Phase (radians)'); title('Phase of Fourier Transform'); grid on;   Output  Copy the MATLAB Code from here % The code is written by SalimWireless.Com clc; clear; close all; % Parameters fs = 100; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector % Signal definition x = cos(2*pi*15*t -

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = hx + n ... (i) The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading. 2. Additive White Gaussian Noise (AWGN) The mathematical effect involves adding Gauss

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

  Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitude'); subplot(4,1,3); plot(t,s); title('Modulated signal'); xlabel('Time'); ylabel('Amplitude'); %demdulated d=s.*c; % At receiver, received signal is multiplied by carrier signal filter=fir1(200,fm/fs,'low'); % low-pass FIR fi