Skip to main content

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...


What is Bit Error Rate (BER)?

The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process.

BER = (number of bits received in error) / (total number of transmitted bits)

On the other hand, SNR refers to the Signal-to-Noise Ratio. For ease of calculation, we commonly convert it to decibels (dB).

What is Signal-to-Noise Ratio (SNR)?

SNR is defined as the ratio of signal power to noise power, and is often expressed in dB:

SNR = signal power / noise power

In dB, the formula becomes:

SNR (in dB) = 10 * log10(signal power / noise power)

For instance, an SNR of 3 dB means the signal power is twice as strong as the noise power.

Online Simulator for BER Calculation

Simulator for BER in M-ary PSK

Simulator for BER in M-ary QAM


Explore Signal Processing Simulations

Comparison of BER vs. SNR for Various Modulation Techniques

Comparison of BER vs. SNR for BPSK, QPSK, 8-PSK, 16-PSK, 32-PSK, D-BPSK, D-QPSK, 4-QAM, 16-QAM, and 64-QAM

BER vs. SNR Graph
Get MATLAB Code

We usually use modulation schemes for better efficiency of bandwidth. For example, if we use a binary PSK system and someone uses a QPSK system, you can see that you are transmitting only one bit in a symbol, whereas the QPSK user shares 2 bits in a symbol at a time. Mathematically, the QPSK data rate or bit will be twice as compared to binary PSK (BPSK).

Further, QAM modulation techniques are introduced, which combine Amplitude Modulation and PSK, showing better performance than PSK alone. This technique is widely adopted in information technology and consumer electronics for high data-rate communication.

For example, in 4 QAM, we can send 2 bits in a symbol, resulting in a data rate twice as high as BPSK. Similarly, for 16 QAM, we send 4 bits in a symbol, making the data rate 4 times higher than BPSK.

In the figure above, PSK modulates the phase of the carrier signal to represent data. In 8 PSK, 3 bits fit into each symbol. However, in 8 PSK, the distance between constellation points is smaller than in BPSK and 4 PSK, which means that a higher Eb/No ratio (SNR per bit) is needed to achieve the target BER. While QAM performs better than PSK in normal SNR, BPSK is preferred in extremely noisy channels.

Modulation Techniques No of Bits in a Symbol
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
64-QAM 6

OFDM technology is used in practical communication systems such as 4G LTE. In this system, data bits are mapped using QAM and then processed by an inverse FFT to modulate the data with multicarrier signals, which are transmitted through an antenna. OFDM is called the multicarrier modulation technique (MCM).

We frequently use BER vs. SNR graphs to compare how different modulation schemes perform. For example, to maintain the same BER, PSK requires less SNR than FSK because PSK is less susceptible to noise. However, FSK may be better than PSK for very noisy and long-distance communications, especially with noncoherent detection or low complexity systems.


1. BER vs SNR for m-ary PSK

MATLAB code example for m-ary PSK
Get MATLAB Code

2. BER vs SNR for m-ary QAM

BER vs SNR for m-ary QAM
Get MATLAB Code

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...