Skip to main content

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...


What is Bit Error Rate (BER)?

The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as, 
In mathematics,

BER = (number of bits received in error / total number of transmitted bits) 

On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.  

What is Signal the signal-to-noise ratio (SNR)?

SNR = signal power/noise power
(SNR is a ratio of signal power to noise power)

SNR (in dB) = 10*log(signal power / noise power) [base 10]

For instance, the SNR for a given communication system is 3dB.
So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2
Therefore, in this instance, the signal power is twice as powerful as the noise power if SNR is 3dB.


Simulator for BER in M-ary PSK

Simulator for BER in M-ary QAM


Explore Signal Processing Simulations

Comparison of BER vs. SNR for BPSK, QPSK, 8-PSK, 16-PSK, 32-PSK, D-BPSK, D-QPSK, 4-QAM, 16-QAM, and 64-QAM

                              
Get MATLAB Code (BER vs. SNR for 64 QAM, 16 QAM, 4 QAM, D-QPSK, D-BPSK, 32 PSK, 16 PSK, 8 PSK, QPSK, BPSK - are shown there. Probability of BER Error {10log10(Pb)} and SNR in dB {E0 / N0 - SNR per bit} are plotted there.)
 
Get MATLAB Code for QAM
Get MATLAB Code for m-ary QAM  
Get MATLAB Code for m-ary PSK 

We usually use modulation schemes for better efficiency of bandwidth. For example, if we use a binary PSK system and someone uses a QPSK system, you can see you are transmitting only one bit in a symbol, and the QPSK user shares 2 bits in a signal at a time. Mathematically, the QPSK data rate or bit will be twice as compared to binary PSK or BPSK.

Further, QAM modulation techniques are introduced, which are a combination of Amplitude modulation and PSK. Which shows better performance than only PSK. And most information technology and consumer companies have already adopted this modulation technique for high data rate communication.

For example, if we are using 4 QAM, then we can send 2 bits in a symbol where the data rate is twice as compared to binary PSK. For 16 QAM, we send 4 bits in a symbol where the data rate is 4 times as compared to BPSK.

Here in the above figure, for PSK, the phase of the carrier signal is shifted to represent data. Where is 8 PSK, 3 bits fit in each symbol? In 8 PSK, the distance between the constellation point is small compared to BPSK, and 4 PSK and Eb/No ratio (SNR per bit) has to become more significant to attain target BER. In the above figure, QAM performs better than PSK in normal SNR. But if the channel is extremely noisy, then we go for BPSK.

Modulation Techniques No of Bits in a Symbol
 BPSK  1
 QPSK  2
 8-PSK  3
 16-QAM  4
64-QAM 6

We use OFDM technology for practical communication systems, e.g., for 4G LTE. Data bits are first mapped using QAM and then fed to an inverse fast Fourier transform the system to modulate the data with multicarrier signals. The signal is transmitted thru an antenna. That's why OFDM is called the multicarrier modulation technique or MCM.

We frequently use BER vs. SNR graph to compare how one modulation scheme is better. For example, to maintain the same bit error rate (BER), we need less SNR in a typical PSK system than FSK, as PSK is less susceptible to noise than FSK. But sometimes, FSK is often a better choice than PSK for very noisy and long-distance communications — especially when noncoherent detection, low complexity, or phase-unstable channels are involved.

On the other hand, the ASK system is more sensitive to noise than FSK and PSK.

So, if we arrange the above three modulation schemes as per their noise resistance, then we get,

PSK > FSK > ASK

[Read more about ASK, FSK, and PSK]

So, to maintain the same bit error rate (BER) in a communication process, we need to provide less Power (SNR) to a PSK system and more SNR to an ASK system.
 

1. BER vs SNR for m-ary PSK




2. BER vs SNR for m-ary QAM






 3. BER vs SNR for ASK, FSK, and PSK

 
 
 
 
 
 
 

 
 
 
 
 
 

4. Theoretical BER vs SNR for Alamouti Scheme


Get MATLAB Code

 

Different approaches to calculate BER vs SNR

1. Theoretical BER vs. SNR: Using probability theories of BER vs. SNR. Example - ASK, FSK, PSK done before


 
 

 

2. Adding AWGN noise at different SNR to the transmitted modulated signal and then plot the BER at different SNR values



 


 


3. Calculate BER vs SNR from Channel Impulse Response





People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t)...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...